A Tutorial on Conducting Computer Simulation for Research and Teaching

Michael Sturman

Rutgers University

The Goal of the Session

Simulation is a methodology with a long history

- In various fields since the 1940s
- Several decades in management research

Not covered in most graduate programs

- Rarely mentioned in research methods texts
- Only occasionally covered in research methods courses
- Most instructional guidance is for computer programmers

• Tutorial in *Organizational Research Methods*

• Sturman, M. C. (2025). Real Research with Fake Data: A Tutorial on Conducting Computer Simulation for Research and Teaching. *Organizational Research Methods*, 28(1), 76-113.

Goal of today's session

- Describe the uses of simulation
- Provide basic instruction on how to simulate data
- Hopefully, get you thinking about this a bit more

Target Audience

- This session is intended for <u>novices</u> of computer simulation
 - For those who know almost (or actually) no knowledge of or experience with computer simulation, but would like to be able to create data for research or teaching
 - This session is not about advanced computer simulation or highly technical issues
 - You don't need to know how to program
- Direction in three programs
 - Original paper demonstrates this with three programs:
 - Excel
 - Mplus
 - R
 - Here, as it is CARMA, I'll focus on R

Why Do Simulation?

A research methodology with particular advantages

- Let's you demonstrate the implications of given assumptions, relationships, or theories
- You can know the "true score" of stuff
- Math is hard; simulation is easier
- Relatively inexpensive methodology
- Forces precision when articulating theory
- Can lead to counter-intuitive results

Other uses

- Develop analytical teaching cases
- Demonstrate findings
- Find quick answers to some questions

Types of Simulations Being Considered

Start with given relationships, and then test models

- Specify relationships among variables and constructs
- Create the data
- Analyze the data and see what happens
- Examples: Common Method Variance, Misspecification, Implications of Assumptions

Start with a model, and provide data

- Develop teaching cases
- Examples: Create datasets for a statistics class, HR Analytics Datasets and Exercises

Start with a model, and see what happens

- Specify relationships among constructs or variables, with or without error
- "Put in the rules" and then "turn the crank"
- Examples: Meta-Analysis and SEM, Meta-Analysis and Dynamic Simulation, Theory Testing

Simulation Learning Curve

Start very simple

- To understand the principles,
- Not extremely helpful (at first)
- Actually, can be helpful later

Consider multivariate situation

Good for methods papers

Consider model

Good for theory testing or teaching

Add complexity

Good for methods, theory, or teaching

Programming

 Necessary for sophisticated methods, theory, and teaching

Progression of Examples

- Creating two correlated variables
- Generating multivariate data
 - Based on a correlation matrix
 - Based on a model
- Giving the data more "character"
 - Dichotomization and categorical variables
 - Adding skew and kurtosis
 - Creating observed items for a latent construct
 - Creating non-linear and moderated relationships

Some Quick (Mathematic) Background

All the math comes from two general places

- Linear combination and multiple correlations
 - Nunnally, J. C., and Bernstein, I. H. (1994).
 Psychometric Theory (3rd edition). McGraw-Hill: New York, NY. Chapter 5.
- Multiple regression
 - $B = (X^TX)^{-1}(X^TY)$
 - $R^2 = (X^TY)^TB$
 - If R² is percent variance explained, then (1- R²) is the percent variance unexplained

The mathematics is not absolutely necessary

- But it does help understand what is going on and why
- More important if trying to do this manually, such as in Excel or if making your own procedures in R

Example 1: Generating Two Correlated Variables

Work with standardized data

- You can always "unstandardized it" when you are done
 - $Y = Z(Y) * SD_Y + \overline{Y}$
- This is much easier to think about
- Think about correlations

Simple math

- Creating two standardized variables (Y and X)
- Each can have its own mean and standard deviation
- Correlated r (or alternatively, the standardized beta is r)
- Y = (X * r) + (C * Error)

What you may need to do

- Create random X and Error
- Calculate C = $\sqrt{(1-r^2)}$

Example 1 Scenario

- Mean(X) = 3.5
- SD(X) = 1.2
- Mean(Y) = 12.4
- SD(Y) = 4.4
- r(X,Y) = 0.40

Example 1 in R

- R is complex, but has good flexibility
- As with many things in R, there are multiple ways to do this
- Set up your parameters:
 - N <- 5
 - MeanX <- 3.5
 - SDX <- 1.2
 - MeanY <- 12.4
 - SDY <- 4.4
 - rXY <- 0.40

Three Ways to do this in R

Method 1

- Uses rnorm(N) to generate N random normal variables
 - ZX <- rnorm(N)
 - Error <- rnorm(N)
 - ZY <- (ZX * rXY) + sqrt(1-rXY^2)*Error
 - X <- (ZX*SDX) + MeanX
 - Y <- (ZY*SDY) + MeanY

Method 2

- Uses the "faux" package, which is designed for simulating correlated data
 - install.packages("faux")
 - library("faux")
 - DataFile <- rnrom_multi(n=N, mu=c(MeanX, MeanY), sd=c(SDX,SDY), r=rXY, varnames = c("X","Y")

Method 3

- Uses the "MASS" library
 - Covar <- matrix(c(SDX^2, rXY*SDX*SDY, rXY*SDX*SDY, SDY^2), nrow=2, ncol=2)
 - Datafile2 <- as.data.frame(mvnorm(n=N, mu = c(MeanZ, MeanY), Sigma = Covar)
 - Colnames(Datafile2) <- c("X", "Y")

Let's Add Some Complexity

Generating multivariate Data

Two approaches

Based the data on a correlation matrix

Based the data on a model

Correlation matrix approach

Useful to examine implications of a pattern of correlations

Useful for evaluating the efficacy of an analytical method

Model-based approach

Useful for generating a specific desired model

 Requires you to specify relationships within the data, even if they are not the focus of your model

Correlation Approach

Specify a full correlation matrix

- Must provide all correlations
- Provide means and standard deviations if desired

Easy in R

- Well...fairly easy, if you already know how to use R in general
- You can ask ChatGPT to do this
 - "Give me R code to create data from a specified 5x5 correlation matrix"
 - Then just put in the desired correlations, means, and SD
 - ChatGPT does this well
- Easy-enough to do it on your own

Example 2 Scenario

Variable	Mean	SD	Α	В	С	D	E
Α	3.5	1.2	1				
В	12.4	4.4	0.40	1			
С	2.6	0.8	0.30	0.10	1		
D	2.7	1.0	0.20	0.15	0.25	1	
E	3.8	1.5	0.40	0.30	0.20	0.20	1

Example 2 in R

- I use the "faux" library for this, as it is <u>much</u> easier
- I don't like "MASS" library
 - <u>mvnorm</u> function requires a covariance matrix rather than a correlation matrix
 - Although the function does provide an option to create exact values rather than a sample
- I use a method very similar to Method 2 of Example 1
 - Instead of giving 1 correlation coefficient, you provide a list
- Use the rnorm_multi() function

```
\begin{aligned} \text{DataFile} &<-\text{rnorm\_multi}(\text{n=}1000,\,\text{mu=}\text{c}(3.5,12.4,2.6,2.7,3.8),\\ &\text{sd=}\text{c}(1.2,4.4,0.8,1.0,1.5),\\ &\text{r=}\text{c}(0.4,0.3,0.2,0.4,0.1,0.15,0.3,0.25,0.2,0.2),\\ &\text{varnames=}\text{c}(\text{"A","B","C","D","E")}) \end{aligned}
```

Warning

Non-positive definite matrices

- Computers will try to do whatever you tell them to do
- Sometimes, however, you may ask for the impossible

Definition

- Formal: A matrix C is said to be positive definite if C is symmetric and
 v^TCv > 0
- Informal (for us): A matrix of correlations that cannot exist in reality
- This happens often when "making up" correlation matrices
 - In "matrixcalc" library, use <u>is.positive.definite</u> function
- How it will be shown
 - R: Error in cormat(r, vars): correlation matrix not positive definite

Generating Data Based on a Path Model

Advantages

- Often, this is more intuitive
- Draw it, then simulate it
- Makes simulating mediation very easy

Disadvantages

• You need to specify more than just one set of betas

Determining Error

- Because you don't have correlations, you cannot use the matrix equation to know the R-square in your model
- To determine the R-square, remember R-square is percent of variance explained
- Given we are creating normal data with a mean of 0 and SD of 1 the variance of predicted values <u>IS</u> the percent of variance explained
- Of course <u>E(var(e))</u> does not always equal <u>1-var(x)</u>, so greater precision may be needed
 - <u>lavaan</u> can help with this

Example 3 Scenario

Example using <u>lavaan</u>

```
library("lavaan")

Population.model <- ' G = 0.40 * F

H = 0.30 * F + -0.20 * G

I = 0.20 * F + -0.10 * G

J = 0.35 * G + 0.25 * H + 0.45 * I '
```

myData <- simulateData(Population.model, sample.nobs = 1000)

Giving the Data More Character

So far

- Every variable we created is continuous
- Every variable we created is normally distributed
- All variables are represented by a single number
- All relationships are linear

This does not look like actual data

- And you may want "real" looking data
- May want data that is
 - Binary or categorical
 - Is non-normal
 - Operates like a multi-item measure of an observed construct
 - Had moderated or non-linear relationships in the data

Our recommended approach

- Create data, based on correlation matrix or model, based on the methods already shown
- Then transform the data to give it the desired characteristics

Dichotomized and Categorical Variables

Dichotomized and categorical variables

• Use IF statements from the original multivariate normal data to create the desired split or categories

More categories is more complexity

- But this is mostly of an issue about checking your code
- R is most flexible with respect to IF statements but requires coding knowledge
- R doesn't "like" looping so much
- More efficient methods require better programming

Adding Skew and Kurtosis

Ways to generate non-normal data

- Method 1: Add error terms that are non-normal
- Method 2: Create a normal variable and transform it
- I recommend the use Method 2, and specifically with the G-and-H distribution

G-and-H distribution

- Transforms a uniform normal into a non-normal shape
- Had three parameters
 - G: which affects the skew
 - H: which affects the kurtosis
 - A: which indicates the distribution's median
 - B: a parameter that influences the variance

Formulas

- Where g $\neq 0$, $Y = A + B\left(\frac{e^{gZ}-1}{g}e^{(hZ^2)/2}\right)$
- If g=0, $Y = A + B(Ze^{(hZ^2)/2})$

Operationalizing the G-and-H Distribution

- Choosing your parameters
 - Pick numbers until it looks right
 - Have a desired skew and kurtosis and find values that approximate that
- I provide an Excel tool to help you determine the G, H, A, and B parameters
 - Available with the slides
 - Quick demonstration
- Alternatively, you can try other distributional transformations and just see if they seem to work
 - Yuck

Latent Constructed and Observed Measures

- Can use <u>lavaan</u>
 - But harder to get "true construct scores"
 - Probably an R expert could do this
- Alternatively, first generate latent scores
- Then, make the measures
 - The simulated score is the latent construct
 - Need to know how many measures (K)
 - Need to know the desired reliability (α)
 - This is why it is helpful to know how to generate two correlated scores
- While "normally" we calculate alpha give observed measures, in simulation we do the opposite

$$r_{ij} = \frac{\alpha}{k - \alpha k + \alpha}$$

$$\lambda = \sqrt{r_{ij}}$$

Scenario

• 4-item measure; Desired alpha of 0.85

•
$$r_{ij} = \frac{\alpha}{k - \alpha k + \alpha}$$

• $r_{ij} = \frac{0.85}{4 - 0.85 * 4 + 0.85}$
• $r_{ij} = 0.586207$
• $\lambda = 0.765641$

• R code

```
L = 0.765641
Population.model2 <- '
          # Factors
         F = L*x1 + L*x2 + L*x3 + L*x4
         G = L*x5 + L*x6 + L*x7 + L*x8
         H = L*x9 + L*x10 + L*x11 + L*x12
         I = L*x13 + L*x14 + L*x15 + L*x16
         J = L*x17 + L*x18 + L*x19 + L*x20
         # Regressors
         G~0.40*F
         H \sim 0.30 * F + -0.20 * G
         I \sim 0.20 * F + -0.10 * G
         J \sim 0.35*G + 0.25*H + 0.45*I'
myData <- simulateData(Population.model2, sample.nobs=1000)
```

Adjusting for Coarse Measures

- When measures have a limited number of possible outcomes
 - This attenuates observed correlations
 - Described in Aguinis, Pierce, & Culpepper, ORM, 2009
 - They provide correction values
 - Divide the desired correlation by the correction value squared
 - You are correcting for both variables, hence the squared term
- Most relevant for computing alpha
 - Coarseness can affect all variables
 - But with multiple items, measures are typically not very coarse
 - Five 5-point scales means you can have 21 levels (correction factor is essentially 1)
 - For measuring reliability, effect can be bigger
 - You correct for each item
 - If each scale item has 5 levels, correction factor is r/0.889

Scenario

- 5-item measure
- Desired alpha of 0.80
- 5-poiont scale
- $r_{ij} = \frac{\alpha}{k \alpha k + \alpha}$
- $r_{ij} = \frac{0.80}{5 0.80 * 5 + 0.80}$
- $r_{ij} = 0.44444$

Correct for coarseness

- Correction factor for 5 scale points is 0.943
- $\widetilde{r_{ij}} = \frac{0.44444}{(.943)^2}$
- $\widetilde{r_{ij}} = 0.499797$
- $\lambda = 0.706963$

Generate your data

Which will be continuous

Round to 5-point scale

- You need to know the variance and mean of observed variable
 - ObsX <- round((X*1.2)+3,0)
 - ObsX[ObsX<1] <- 1
 - ObsX[ObsX>5] <- 5

Making Observed Measures

- If you don't need "true" scores
 - Use lavaan method
- If you need both "true" and observed scores
 - Generate all your "true" scores first
 - Determine r_{ii} based on your desired k, α , and coarseness
 - Create each measure just like in the 2 correlated variable case
 - Your X is the true score
 - Your r is the calculated r_{ii}
 - Repeat for all K measures

Non-Linear and Moderated Relationships

Can be tricky

 Nonlinear and product terms have constrained and difficult to calculate relationships with other variables

My advice

- Create everything with linear relationships first
- Use Correlational or Model-based approach
- Then, use the Model-based approach to create the dependent variable that is influenced by the nonlinear terms

Example

• $J \sim 0.35 *G + 0.25 *H + 0.45 *I + 0.10 *G *H$

Comprehensive Example

Variable Characteristics

Variable	Min	Max	Mean	SD	Skew	Kurtosis	Number of items	Alpha	Scale points	Calculated Values
Gender	0	1	0.40	_	1	_	1	1	_	Cutoff = 0.25335
Experience	0	12	3.0	1.07	0.69	1.20	1		_	A = 2.8952; B = 1.0015 g = 0.2000; h = 0.0225
Conscientiousness	1	5	2.70	0.40	0	0	4	0.85	5	r = 0.6592
Cognitive Ability	70	130	100	10	0	0	5	0.90	>15	r = 0.6429
Performance	1	5	3.20	0.80	0	0	3	0.80	5	r = 0.6426

0

Possible Next Steps (But Not Today)

Multilevel data

- Option 1:
 - Use lavaan
- Option 2:
 - Treat the lower-level data as group-centered
 - Create the higher-level data first, per normal
 - Match it to the lower level, and then create as per normal
 - Then just add up the levels when done
- Range restriction, selection effects, and missing data
 - Use of IF statements and deleting or changing lines as necessary

Other Possible Steps

Varying parameters

- Requires some programming
- Easily done in R
- Some methods are more efficient than others
 - R isn't great at "loops"

Simulating longitudinal data

- Same as what we've done so far, just different logic
- Need to have a correlation matrix with time 1 and time 2
- Generate time 1, then create time 2
- Time 2 then becomes the next Time 1
- Repeat

If You Really Want to Get Good

Better understand the math

- Again, Chapter 5 of Nunnally & Bernstein may be the most helpful
- A little matrix algebra can be helpful

You will eventually need to do programming

- Loops are almost always essential for complex simulations
- Not very hard in R, but takes some programming basics
- Greater efficiency requires better programming

• Practice, Practice

How to Practice

Simulation is great for creating teaching cases

- Create datasets with known relationships
- Great for PhD Methods exams
- I've used them in intro HR classes
- With a loop (or enough time) you can create unique datasets for each student
 - Same true underlying relationships or model
 - But sampling error will give everyone slightly different answers

Research methods questions

- Generate data based on a correlation matrix to check the efficacy of different modeling approaches
- Generate data based on a model to examine the effect of incorrect analyses
- These can be interesting, but require that you do not have "too many" parameters

Final Thoughts

- Simulation is a very useful methodology
 - Lets you ask questions that can't be answered with other methods
 - Lets you create data for teaching and research purposes
- But instruction in simulation is missing from most research methods texts or PhD program curriculums
- Hopefully, after today you can
 - Create data based on a correlation matrix
 - Create data based on a model
 - Give created data more "character" by changing its distribution
 - Make observed scores of an underlying latent construct

