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C h a P t e r  1

ON FINDING YOUR LEVEL
Stanley M. Gully and Jean M. Phillips

We encourage scholars to think more deeply about 
the concept of the appropriate level of analysis in 
research. By appropriate level, we are not referring 
to the stated level of interest, the level of data 
collection, or the appropriate level of statistical 
analysis. For the purpose of this chapter, identifying 
the appropriate level means finding the level that 
has the most explanatory power for the outcome 
of interest. When we wish to identify the level that 
explains what is happening in a dynamic and complex 
system, how do we know where the “action” is in 
a multilevel framework? To answer this question, 
we focus on three key issues. First, we discuss why 
identifying the appropriate level is more challenging 
than it might initially appear. Some scholars have 
suggested that contiguity in levels creates the strong 
interactions necessary to create bonds, close coupling, 
and embeddedness. We agree in general but propose 
that focusing on tightly coupled levels can overlook 
key determinants of process dynamics that may skip 
levels. Second, we examine the notions of causality 
and variance and discuss the implications of these 
concepts in a multilevel framework. Third, we offer 
ideas and examples of how we can expand our 
thinking to consider what is meant when we refer 
to the appropriate level of analysis. By examining 
variance creation and variance restriction, we 
highlight a number of key processes that lead to the 
generation and dissolution of higher and lower level 
effects. We provide several examples and propose 

some potential solutions to the thorny challenge  
of thinking about levels in the social sciences.

The concept level of analysis is pertinent to 
all social sciences, including research on family 
dynamics (Snijders & Kenny, 1999), education 
(Raudenbush & Bryk, 1988), health (Blakely & 
Woodward, 2000), crime (Groff, Weisburd, & 
Yang, 2010), emotions (Keltner & Haidt, 1999), 
international relations (Singer, 1961), community 
psychology (Shinn & Rapkin, 2000), applied 
psychology (Chan, 1998), and social and personality 
psychology (Nezlek, 2001). Similarly, we see levels 
issues in the micro–macro divide in the disciplines 
of sociology and economics (Gerstein, 1987; 
Hodgson, 1998; Jepperson & Meyer, 2011). The 
following discussion pertains to levels issues in all 
of these fields and more. We use a variety of examples 
drawn from different fields but applicable to all of  
the above social science disciplines, as well as others.

We begin with the following simple question: 
What is the appropriate level of analysis? To answer 
this question, we must first define what is meant 
by level. We define a level as a focal plane in social, 
psychological, or physical space that exists within 
a hierarchical structure among things or constructs 
(Gully & Phillips, 2005; K. J. Klein, Dansereau, & 
Hall, 1994; Rousseau, 1985). Levels refer to distinct 
hierarchical structures within a system, with some 
entities existing within or as a part of others. We 
can conceive of the hierarchical structure as a series 

http://dx.doi.org/10.1037/0000115-002
The Handbook of Multilevel Theory, Measurement, and Analysis, S. E. Humphrey and J. M. LeBreton (Editors-in-Chief)
Copyright © 2019 by the American Psychological Association. All rights reserved.
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of nested relationships with, for example, repeated 
observations nested within individuals, individuals 
nested within families, and families within commu-
nities. Communities, in turn, can be nested within 
regions, and regions can be nested within countries.

Typically, what is defined as a higher or lower 
level depends on the phenomenon of interest. 
In a business context, teams are a higher level of 
analysis when compared to individuals, but they 
are a lower level of analysis when compared to 
organizations, unless the “teams” are policy makers 
in governments that affect organizational regulation, 
in which case the teams may be at a higher level 
than organizations. To be clear, higher and lower 
levels do not refer to power relationships or echelons 
(Rousseau, 1985), although they may be related. 
Also, we do not mean to imply that all levels are 
equally present in all organizations or all contexts. 
Some organizations may not have teams within their 
hierarchical structure (i.e., flatter organizations), 
whereas other organizations may or may not have  
distinct business units within their overall organiza-
tional structure. We are merely trying to highlight the 
possibilities in levels as we pursue our discussion.

Figure 1.1 shows the levels most often considered 
by organizational scientists. Given our backgrounds 
in industrial and organizational psychology and 
manage ment, we draw from examples that tend 
to focus largely on the individual (e.g., individual 
attitudes, individual behavior, and individual 
performance) or team levels (e.g., team cohesion, 
team potency, team performance, team conflict), 
but the same principles we describe also apply to 
other levels and other contexts of social science. For 
example, we can envision students within classrooms 
within schools within school districts within states 
or regions within nations. Also, as we seek to answer 
the question “what is the appropriate level,” we 
find that our focal level may not be the individual 
level, even if we wish to understand individual 
outcomes. In any case, much of our attention as 
social scientists has been targeted toward the lower 
regions (as indicated by the shading), ranging from 
social collectives (e.g., organizations) to individuals. 
Some scholars might suggest that we look at levels 
below that of individuals by trying to understand 
what happens to individuals over time (e.g., mood). 
This is a lower level because it is within the person 

Continents/Nations

Regions/Industries

Organizations

Business Units

Groups/Teams

Individuals

Time Scale

FIGURE 1.1.  Representation of levels.
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over time. This argument is correct, but we address 
time as a distinct topic in subsequent discourse 
for reasons that will soon become clear. For now, 
we focus on physical, psychological, or social 
structures that exist above and below the level  
of groups–teams.

One issue that should be apparent is that levels 
have semipermeable boundaries. For example, some 
individuals are members of multiple teams within 
organizations and some countries are somewhat 
homogenous internally, whereas others may have 
varying characteristics across regions (as in the 
United States). We see the same thing in high 
schools with students attending several classes 
within the same school or teachers working in  
more than one school within the same district.

Additionally, it is not always clear where some 
levels reside. Some levels cut across other levels. 
Consider for example, the notions of “job” or 
“vocation.” Does a job or vocation exist within  
(i.e., hierarchically nested under) an organization? 
Often, we place jobs at a lower level than the work 
unit (different jobs within the unit) and the individual 
who fills a given job at the level below the job level 
(one type of job can be filled by different people, 
so job is the higher level). The organization would 
be at a higher level than the individual, job, or 
work unit, because the work unit is nested within 
the organization. Yet individuals have allegiances 
to their jobs that transcend work units and even 
organizations. Moreover, many jobs share common 
characteristics that transcend organizations or 
even geographic regions (O*Net, 2017). Similarly, 
many of us see our membership within professional 
societies as part of our job, but our membership 
both defines and is defined by our roles outside the 
university or college to which we belong.

Consider the job of professor. A person in such 
a position is nested in multiple sets of structures, 
including formal hierarchical job structures 
(e.g., rank, department, college, university) and 
professional semi- or nonhierarchical structures 
(leadership in professional societies, editorial 
boards, multiple research teams). Thus, the person 
is nested within the job (e.g., associate professor) 
nested within the department (e.g., Sociology) 
within the university (e.g., Penn State), but that same 

person may also be nested within several research 
teams that may be further nested within distinct 
geographic or cultural regions. Professional structures 
and research teams often exist independently of the 
department or university within which the person is 
employed, yet the particular individual and associated 
job of professor is relevant to all these contexts.  
This is what we mean when we say that some levels 
cut across levels and that levels are semi-permeable. 
One challenge is trying to pick the correct level of  
analysis for understanding an outcome when the 
level itself may be semi-permeable (and as we shall 
see in the section Dual Processes in Multilevel 
Systems, impermanent). As scientists, we need to 
be clear about our basis for grouping entities and 
articulate reasons for ignoring other potentially 
relevant grouping systems (Mathieu & Chen, 2011).

PROBLEMS WITH IDENTIFYING  
THE LEVEL

It may seem that a chapter exploring the identification 
of the appropriate level isn’t needed because if we 
want to know the level, we need only think about 
the outcome we are trying to understand. If we want 
to understand individual behavior (e.g., student 
achievement), then the level is the individual (i.e., 
the student). There may be factors residing both 
above the individual level (e.g., teacher experience, 
availability of classroom technology) and below the 
individual level (e.g., day-to-day patterns of sleep, 
nutrition, or affect) that may impact or influence 
individual behavior, but the level is clearly the 
individual. Likewise, if we want to understand 
outcomes residing at the level of a social collective 
(e.g., team performance), then the level is the team. 
Similarly, a focus on trust in married couples implies 
that the level is the couple; a focus on organizational 
profitability implies that the “appropriate” level is 
the organization.

However, what if it isn’t so simple? When we 
ask, “What is the appropriate level?” we don’t mean 
“What is the level of your dependent variable?”  
or “What is the level at which I should analyze my 
data?” Rather, we are asking, “What is the level 
that will enable deep understanding of a particular 
phenomenon?” Or, in plain language, “Where’s the 
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action?” This question is more difficult to answer 
for a variety of reasons. First, our theory and 
disciplinary backgrounds affect what we attend to. 
Perhaps if we want to understand individual student 
health, then we might surmise that the level is the 
individual student. We could incorporate a level up,  
so we could examine social structures (e.g., peer  
social support, school lunch programs) to under-
stand individual student stress and wellness. This  
is an obvious approach to the levels question. Think 
about the outcome of interest, and that tells you the 
level of action.

Unless, of course, you work at the Centers for 
Disease Control and Prevention (CDC) and are 
trying to understand student health; then the level 
might be within-person, at the biological or cellular 
level. Or suppose you work at the CDC and you  
are trying to understand a pandemic in schools,  
in which case the level might be international or  
global travel patterns. We may not be able to under-
stand individual health without understanding 
global infection patterns (global level), and we can’t 
understand global patterns if we don’t understand 
the biological pathways through which an infection 
occurs (viral or bacterial level). Additionally, we 
may need to understand individual travel patterns 
(within or across national levels) as well as within-
person level behaviors and genetics (Are particular 
people predisposed? Does the individual wash his 
or her hands and when? What did he or she eat? 
With whom did she or he interact?). Understanding 
student health at the CDC to stop a global pandemic 
requires an understanding of all these levels.

Our choice of theory affects everything. It deter-
mines what level of analysis we use for sampling, 
who or what we sample, how we measure, what we 
measure, when we measure, and how we analyze 
the data. If we believe that student health is an 
individual-level phenomenon, then we might go 
to a single school; gather data on 1,000 students, 
including classrooms, teachers, classmates, and 
so forth; and then analyze the data. Given that we 
believe it is an individual-level phenomenon, we  
will ask how the individual feels, thinks, and acts. 
But what if it is a group phenomenon? Perhaps 
instead of asking whether the individual worries 
about wellness, we need to ask whether other 

students in the classroom worry about wellness 
because that sets the social context for taking  
care of oneself. We know the wording matters. 
Asking whether I feel self-efficacious is not the 
same as asking whether classmates feel efficacious 
(Chan, 1998), even if we aggregate individual 
perceptions to the level of the classroom. How 
we word the questions affects the variability we 
observe and the intrinsic meaning of the construct 
(Baltes, Zhdanova, & Parker, 2009; Chen, Mathieu, 
& Bliese, 2004; K. J. Klein, Conn, Smith, & Sorra, 
2001). What if student health is influenced by 
school-level or districtwide phenomena, as it almost 
certainly is (e.g., McNeely, Nonnemaker, & Blum, 
2002), but we focus on the individual?

For another context, consider employees working 
in the technology industry. Gathering data (even  
a large sample; N = 5,000) from individuals nested 
within a single company or individuals nested within 
two companies (e.g., IBM and Google; N = 5,000 
per organization) necessarily excludes key factors 
that determine employee health such as industrial 
safety records. Our initial focus on the individual 
may overlook the large-scale patterns of health 
and wellness across industries, organizations, and 
occupations (Bureau of Labor Statistics, 2015a, 
2015b, 2016; Johnson et al., 2005), and we miss the 
big picture. Our theory determines what we sample 
and what we measure. If we believe that occupations 
(or grades), organizations (or schools), or industries 
(or school districts) matter, then we gather data on 
units at that level. If we believe individuals matter, 
then that’s where we seek our samples.

If our theory determines how we sample, measure, 
and analyze, and if the way in which we approach 
these decisions then constricts (or enhances) our 
ability to see effects at a particular level, then how 
do we know when we’ve got the right level or levels? 
There have been multilevel analytic systems that 
purport to tell us the level at which effects exist 
(Dansereau, Alutto, & Yammarino, 1984). Although 
such approaches can be useful because they can 
tell us the level at which we observe variance, the 
findings are unlikely to generalize to other, more 
diverse samples or data sets. These approaches 
cannot tell you where the variance lives in the 
system, out there in the wild, because the variance 
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of the data is itself determined by what and how we 
measure and sample. We won’t see variance, even 
if it’s important, if we don’t sample and measure in 
ways that enable us to see it.

In a way, James, Demaree, and Wolf (1984) 
recognized this conundrum when they introduced 
their measure of agreement: rWG. Simply because 
there is insufficient variance across units to see 
differences doesn’t mean that agreement isn’t present 
or that a higher level construct doesn’t exist. 
Most existing measures for agreement at the time 
examined it from a reliability perspective or from 
a group effects perspective [e.g., F tests, intraclass 
correlation coefficient (ICC)(1), ICC(2)] and thus 
relied on the proportion of variance across units  
as compared to the proportion of variance within 
units to tell us whether members within units 
responded reliably or consistently ( James, 1982). 
Simply because all units are relatively similar in 
terms of their mean levels on a construct (and thus, 
there is very little between-unit variance) doesn’t 
mean that there isn’t a higher level construct worth 
assessing and understanding.

Our choice of theory can and will lead us to 
focus on a given level, but we bring with us a certain 
myopia for looking at a given research problem.  
A public health researcher might look at employee 
health at the governmental and community levels 
(e.g., health policy), and a sociologist might look 
at employee health as a social problem, at the level 
of structures within our society (e.g., poverty, access 
to health care). A management researcher studying 
teams might look at employee wellness as a function 
of social and team dynamics or leadership (e.g., social 
support, abusive supervision, access to wellness 
programs). A personality theorist might look at 
employees’ mental health as a function of individual 
characteristics (e.g., self-identity, self-esteem, 
sensation seeking, depression). Which level is 
“correct”? The point is that selecting the focal level 
of interest can excise meaningful other variables 
from the equation.

How then do we find the correct level? For now, 
it’s enough to assert that no statistical system can 
identify whether we have the correct level because 
our statistical results are determined by what we do. 
Furthermore, theory drives what we do, which then 

tells us what we see and have done. It is difficult to 
determine the correct level theoretically because the 
theory gives us tunnel vision. Unfortunately, there’s 
no recipe to follow to know that we’ve found the 
right level. Instead, we have to operate as detectives, 
picking up a clue here or there, fencing off areas 
for careful examination to reduce contamination of 
evidence, making observations over time. It is only 
then that we will uncover where (i.e., at what level 
or levels) the (majority of) variance truly resides.  
In most circumstances, we are not looking for a  
single level. Instead, we have to think about iden-
tifying a multilevel nomological network (Cronbach 
& Meehl, 1955). The following sections provide 
thoughts on how we can proceed more effectively 
as detectives and provide some fodder for thinking 
beyond our respective disciplinary foci.

ASSUMPTIONS OF TIGHT COUPLING

Previous scholars (Hackman, 2003; Kozlowski  
& Klein, 2000; Simon, 1973) have suggested that 
contiguity in levels creates the strong interactions 
necessary to create bonds, close coupling, and 
embeddedness. In general, we agree with this 
sentiment, but we caution that by focusing on 
tightly coupled levels we may overlook key deter-
minants of process dynamics that may skip levels. 
Scholars (ourselves included) frequently assume 
that stronger relationships may be detected among 
variables that exist at the same level of analysis.  
So, for example, it is thought that the best predictors 
of individual performance will be individual factors 
(e.g., intelligence, conscientiousness, work ethic; 
Schmidt & Hunter, 1998). Likewise, many scholars 
would argue that we need to examine team-level 
input and process factors to understand team-level 
outcomes, even when those input or process factors 
represent aggregations of individual-level variables 
(e.g., team ability or team personality; Barrick, 
Stewart, Neubert, & Mount, 1998; Baysinger, Scherer, 
& LeBreton, 2014). It’s such a compelling argument 
that it nearly seems tautological, and there is a long 
history of this type of thinking.

Indik (1968) was an early systems scholar 
who presented a figure with panels representing 
variables for structure, process, and function at  

This content downloaded from 71.207.15.33 on Tue, 23 Apr 2024 17:23:27 +00:00
All use subject to https://about.jstor.org/terms



Gully and Phillips

16

the organizational, group, and individual levels.  
He stated,

Specifically, we expect larger relation-
ships to occur between variables in  
panels closer together in the schema. 
For example, organization size, a Panel 
One variable, should be more clearly 
related to variables of organization 
function or process such as communi-
cation, control, or coordination than to 
Panel Five [individual] variables such 
as attitude toward the organization, 
attitude toward the work group, and 
achievement motivation. (p. 22)

Here he is making the clear argument that we will 
find stronger connections for variables connected 
at a given level, or across contiguous levels, than 
jumping across levels.

Simon (1973) made a similar argument when 
describing the nature of hierarchical systems.  
He described a hierarchy that “leads from human 
societies to organizations, to small groups, to 
individual human beings, to cognitive programs 
in the central nervous system, to elementary 
information processes” (p. 9). He went on  
to state the following:

Most interactions that occur in nature, 
between systems of all kinds, decrease 
in strength with distance. Hence, any 
given “particle” has most of its strong 
interactions with nearby particles. As a 
result, a system is likely to behave either 
as made up of a collection of localized 
subsystems or to form a more or less 
uniform “tissue” of equally strong  
interactions. (p. 9)

This perspective suggests that everything is 
connected but that some things are more connected 
than others, and those factors closest to others at 
the same level are most important for understanding 
a particular phenomenon. We once believed this 
as well, and perhaps it is often true. But there is 
evidence to suggest otherwise, and we think the 
“skip level effect” may be more common than we 
typically consider.

Hackman (2003) questioned the utility of 
seeking explanations solely at the same or lower 
levels of analysis. Data were collected on 300 flight 
crews in nine different types of aircraft at seven 
different airlines. The conceptual model tested was 
Hackman’s own (1987), which posited that the design 
of the flying task and the design of the aircrew 
would determine whether aircrews developed into 
self-correcting high-performing units. As he put it,

We knew we were in trouble when we 
performed a simple one-way analysis 
of variance on our measures of crew 
structure and behavior across the seven 
diverse airlines. There was almost no 
variation across airlines on precisely 
those crew-level variables that we had 
expected to be most consequential for 
performance. (p. 910)

Where was the team level (i.e., crew-level) variance? 
When they turned to the organizational and institu-
tional contexts within which aircrews operated, 
they found variation in perceived contextual 
factors, including adequacy of material resources, 
clarity of performance objectives, recognition and 
reinforcement for excellent crew performance, 
availability of educational and technical assistance, 
and availability of informational resources. Between- 
airline differences accounted for 23% of the variation 
in the composite measure of context supportiveness 
and context related to pilot satisfaction. However, 
none of these factors predicted pilot behavior and 
aircrew effectiveness. Why?

According to Hackman (2003), there were  
three dominant influences on aircrew performance, 
none of which were under the control of the flight 
crews or even the airlines for which they worked. 
First, there was aircraft and cockpit technology. 
Standard cockpit technology was generated by 
designers and engineers at Airbus and Boeing, and  
there are finite sets of configurations and technologies, 
all of which were designed for efficiency and safety. 
They found no aircrew differences associated 
with aircraft differences, because the consistency 
of technology determined how aircrew members 
interacted with one another and with others external 
to the flight crew. Even though there was limited 
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observable variance, there was a higher level aircraft 
manufacturer effect that determined how aircrews 
behaved.

Second, there is a clearly defined set of regulatory 
procedures and standards developed over the years  
by the U.S. Federal Aviation Administration (FAA), 
in cooperation with airline manufacturers and  
flight operations departments of U.S. airlines. These  
FAA procedures and standards have been adopted 
globally, often with little modification, by airlines 
and regulatory agencies around the world. This 
creates consistency in how aircrews operate in widely  
varying contexts. Again, although we see limited  
variance, there is a higher level effect of institution-
alized regulatory procedures and standards on 
aircrew behavior.

Hackman (2003) described the pervasive 
“culture of flying” that is rooted in a shared individ-
ualized experience that affects how pilots perceive 
and behave. Every pilot has a shared, nearly institu-
tionalized experience as a pilot. All pilots worry 
about medical checks, and each pilot recognizes  
the importance of proficiency checks. This creates  
a consistency in the values and mindset of pilots 
regardless of background or location. There is limited  
variance across individuals for this “pilot” cultural 
effect, but the consistency across individual exper-
iences affects what happens in flight crews. There 
is empirical evidence in other domains that when 
decision makers engage in consistent behaviors and 
interventions across time and situations, restriction 
of variance in performance can result. In other words, 
effective organizational or policy interventions 
attenuate or restrict variance in behavior or perfor-
mance (Lebreton, Burgess, Kaiser, Atchley, &  
James, 2003).

Hackman (2003) detailed other examples of  
how factors at higher or lower levels of analysis than 
the team impinge on team processes and outcomes 
across a diverse array of examples including orchestral 
performance (influenced by national level cultures 
regarding gender and strength of ties with the 
orchestral community) and hospital patient care 
teams (influenced by nurse managers’ reporting  
of errors).

Upon reflection, these findings make intuitive 
sense. Higher and lower level factors can shape the  

variance and outcomes observed at a particular 
level, sometimes many levels apart. Organizational 
differences can enhance or impede variation in 
team processes, so it may be the case that team 
effectiveness is not an outgrowth of team-level 
process or input factors but a result of contextual 
factors that determine how the team is structured 
and behaves. Likewise, family dynamics within a 
given society may be equally or more influenced by  
cultural factors than by individual factors. This is  
actually an old idea, but one that we believe theorists 
should re-embrace.

We concur with Hackman (2003) that we should 
consider “bracketing” higher and lower levels when 
investigating processes at a given level. Bracketing 
can enhance one’s understanding of targeted 
phenomena; help discover factors that drive those 
phenomena, even when variance doesn’t initially 
appear to exist; uncover boundary conditions and 
interactions that shape an outcome of interest; and 
inform choice of constructs within a nomological 
network (Cronbach & Meehl, 1955) representing  
a multilevel theoretic framework.

We hope that we’ve convinced you that  
(a) phenomena often cannot be easily understood 
with a focus on a single level of analysis; (b) we 
can’t simply use theory to know the correct levels 
to consider because theory can be blinding; (c) we 
can’t simply use statistics to know the correct levels 
to consider because our observations are driven 
by what we do (i.e., what data we consider and 
how we analyze it); and (d) simply assuming that 
factors at the same or contiguous levels are the most 
important for understanding outcomes at a given 
level may be misleading. Next, we turn to some 
thorny issues associated with finding the correct 
levels to consider and offer some possible solutions 
to these challenges.

EXPLANATIONS OF CAUSE AND EFFECT

From an epistemological perspective, why do 
scholars and researchers examine multilevel issues, 
or for that matter, any research domain? Presumably 
we do so because we wish to understand particular 
phenomena of interest. Inherent in this statement, 
despite limitations of our research methodologies 
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and data analytic techniques, is the notion that we 
wish to understand causality or causal systems, or 
to answer the “why” question. If we aren’t trying to 
understand what causes what, and why, then what  
is the point of theory and research? We could merely 
describe what we see.

Implicit in the work we do is the idea that we 
want to understand cause and effect relationships.  
If we adopt John Stuart Mill’s approach to determining 
causality (Cook & Campbell, 1979), then three 
conditions must hold: (a) the cause must precede 
the effect in time, (b) the cause and effect have to  
be related (covary), and (c) other explanations of  
cause and effect have to be eliminated. These three  
conditions pose unique challenges and opportunities 
in a multilevel context. We begin with condition (c), 
that other explanations of cause and effect have to 
be eliminated.

Almost by definition, our world is made up of 
complex multilevel systems, including geographical 
tracts, nations, religions, schools, families, and 
neigh borhoods. Organizations and the people who  
work in them are a sliver of that complex multilevel  
context. This is important because by acknowledging 
complexity across levels, we are acknowledging that  
most levels (actually, we would argue all levels) 
operate as part of an open rather than a closed system. 
As Katz and Kahn (1978) noted, a closed system 
walls off external influences on the relationships 
between inputs, processes, and outcomes, so that 
it becomes easier to see when movement in one 
part of the system leads to predictable patterns of 
movement or outcomes in other parts of the system. 
In contrast, in an open system the inputs, processes, 
and outcomes of a given part of the system may be 
influenced by inputs and disruptions from factors 
external to the system.

For example, in a closed system we could raise 
an individual in a box and control all aspects of the 
environment so that we could see how inputs (e.g., 
rewards) translate into outcomes (e.g., productivity) 
in a relatively deterministic pattern. This would be  
Skinner’s box applied to an individual’s life. Reality, 
however, is quite different. Individuals are buffeted 
by a variety of factors ranging from genetic and 
family effects to work, school, and national effects. 
We see external influences on individuals resulting 

from major wars (e.g., World War II, Vietnam, Iraq),  
unusual opportunities (e.g., the Internet), and  
disasters (e.g., tsunamis), as well as other geophysical 
events that shape food and resource accessibility 
(e.g., volcanic eruptions, water scarcity). Our planet 
is the ultimate open system, with the constant 
energization on earth provided by the sun allowing 
life to fight the constant downhill ride toward 
entropy and enabling it to build structure where 
otherwise there would be disorder. In open systems, 
higher levels can be affected by lower level inputs  
as well. For example, individuals can become infected  
by parasites or bombarded by high-energy particles 
that can alter DNA, eventually leading to adaptations 
or cancer.

Within such dynamic, open systems, how are  
we to resolve condition (c), eliminating other 
explanations of cause and effect? It seems impossible 
because of the nearly infinite array of multilevel 
influences that can serve as an alternative explanation 
of cause and effect. To address this issue, we adopt 
a different but related point of view. Rather than 
completely eliminating other explanations of cause 
and effect, we suggest that we should incorporate 
them, theorize about them, and analyze and test  
them. We must consider bracketing levels (Hackman, 
2003) by imagining a larger box (a theoretically 
closed system that doesn’t exist in reality) that 
incorporates input and disruptive factors at levels 
below and above the focal level of interest. In this 
system, we may need to bracket levels much higher 
or lower than the outcome of interest. This is the 
foundation for the multilevel nomological network 
we mentioned in the section Assumptions of  
Tight Coupling.

For example, we have studies examining how 
organizational factors influence happiness and job  
satisfaction (Grant, Christianson, & Price, 2007; 
Takeuchi, Chen, & Lepak, 2009), how cross-national 
differences are related to happiness (Schyns, 1998), 
how teams affect happiness (Cheshin, Rafaeli, & 
Bos, 2011), how marital and family factors relate 
to happiness over time (Tsang, Harvey, Duncan, 
& Sommer, 2003), and how individual attributes 
are related to happiness 10 years later (Costa & 
McCrae, 1980). Our point is that such examinations 
have been piecemeal, taking one or two points of a 
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larger system. This is not enough because happiness 
is likely to be influenced by all of these factors  
plus other factors such as macroeconomic patterns 
(Di Tella, MacCulloch, & Oswald, 2003).

It’s fine enough if we, as scholars, tackle different 
components of a problem, but we tend to stay on 
our disciplinary tracks, rarely peering up, down,  
or across to take in the perspectives of scientists  
in other disciplines working on the same or related 
problems. At a recent conference on multilevel issues, 
we saw some of this in action. Some scholars focused 
on factors proximal to the individual, whereas others  
focused on organizational contextual factors. This led  
to an interesting dialogue about what matters more:  
organizational context or proximal team character-
istics. The reality is that both perspectives are valid 
and we need to bridge them (Hitt, Beamish, Jackson, 
& Mathieu, 2007; House, Rousseau, & Thomas-
Hunt, 1995). The effort to create precision in our 
theorizing may have the unintended side effect of 
creating ambiguity in what is the appropriate level  
of focus, because it is rarely a single level.

It is often said that the level of theory refers to 
the focal level to which generalizations are meant 
to apply (Mathieu & Chen, 2011; Rousseau, 1985). 
We can and should attempt to specify levels of 
theoretical interest, but we fear the process creates 
blinders that inhibit our ability to see the system 
as a system, particularly one with open inputs and 
disruptions. As Kozlowski and Klein (2000) stated:  
“The system is sliced into organization, group, and  
individual levels, each level the province of different 
disciplines, theories, and approaches. The organi-
zation may be an integrated system, but organizational 
science is not” (p. 3). We wholeheartedly concur 
and would argue that this criticism is not unique to 
organizational science, but more generally to social 
science (inclusively defined). Furthermore, at the 
higher level the system is also sliced into clusters 
(e.g., industries, economies, social and political 
structures), and at the lower level individuals are 
sliced into within-person constructs (e.g., moods, 
intraindividual variation in performance, neural 
patterns, even genetics). Scientists (including 
ourselves) are typically trained to slice and dice; 
we are trained to isolate and test. However, even 
theories that purport to be “integrative” rarely offer 

a unified treatment of phenomena considering 
possible antecedents, correlates, and consequences 
of the phenomena across four, five, or even more 
interacting “levels.”

Rousseau (1985) pointed out an idea on which 
House et al. (1995) later elaborated: Processes across  
several different levels are often connected, and the  
appropriate units of analysis may span from indi-
viduals to teams to organizations to clusters of orga-
nizations. Phenomena such as marital satisfaction, 
learning, group decision making, altruism, and 
technological systems are not single-level systems. 
To understand them and their associated causal 
determinants and effects, we must adopt a more 
holistic and integrative mode of thinking. The 
“appropriate” level is the system. It is all of the 
levels. Truly understanding phenomena requires 
a comprehensive understanding of many parts of 
a system or a clearer definition of what you are 
interested in studying (recognizing that you may 
be excising important determining factors). There 
is no single focal level because the phenomenon 
transcends the distinct slices. The mind is more 
than a cluster of neurons, the individual is more 
than a pile of organs, the family is more than an 
aggregation of individuals, the organization is  
more than a group of people with similar attitudes 
or goals, and an organizational strategy is more  
than the CEO’s vision.

Consider another example to further elucidate 
the importance of this type of thinking. It is well 
accepted that the laboratory experiment is the epitome 
of research designs to assess causality because of 
its high internal validity and ability to eliminate or 
control extraneous influences (Shadish, Cook, & 
Campbell, 2002). However, experiments are part 
of an open system and exist within higher levels 
(Hanges & Wang, 2012). Consider the psychology 
undergraduate who expected to participate in 
laboratory studies as part of the requirements for 
course credit. The broader context is the cause for 
participation in the study, and the student carries 
these external influences into the closed box of the 
laboratory environment. The student will almost 
certainly behave differently if he or she feels like a 
lab rat forced to participate as compared to a student 
who feels that his or her participation is making a 
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fundamental contribution to science. Additionally, 
it’s possible that there is a social influence process 
operating, perhaps at the department or university 
level, so that in some universities students are happy 
to participate whereas at others they begrudgingly 
give their time. Laboratories are not as pure as we 
might like to believe. How might the outcome of  
an experiment vary as a function of the open system 
input factors?

How do we build a science of understanding 
causal connections to individual behavior when 
such effects can cascade across systems and levels? 
Our answer is to build theory that examines, tests,  
and incorporates the possible effects of such multi-
level input factors into our models of causality. 
Failure to do so may lead us terribly astray because 
we cannot know what to conclude from even an  
excellently designed experiment without under-
standing the context.

How does this line of thinking help us with the  
causal problem at hand? By integrating causal factors 
across levels, we eliminate or reduce the likelihood 
that other unspecified causal factors are at play. 
“Other unspecified causal factors” is analogous to 
the omitted variables problem (see James, 1980; 
James, Mulaik, & Brett, 1982). Failure to include 
key causal variables in our models creates bias 
and misspecification of effects. By integrating other 
causal mechanisms across levels, we reduce the 
likelihood of omitted variables and overlooking 
other causal factors. As Katz and Kahn (1978) 
suggested,

The closed system view implies that 
irregularities in the functioning of a 
system due to environmental influ-
ences are error variances and should  
be treated accordingly. According to this 
conception, they should be controlled 
out of studies of organizations. From 
the organization’s own operations they 
should be excluded as irrelevant and 
should be guarded against. . . . Open 
system theory, on the other hand, would 
maintain that environmental influences 
are not sources of error variance but are 
integral to the functioning of a social 

system, and that we cannot understand 
a system without a constant study of the 
forces that impinge upon it. (p. 32)

Additionally, if we are able to understand the 
operation of complex causal open systems across 
levels, then it becomes inordinately difficult for 
an unspecified and unmeasured causal factor to 
explain the interwoven chains of events unfolding 
across levels. Similarly, if there is an important 
yet overlooked causal variable in the system, 
then we should be able to note its presence by 
perturbations within some particular level or 
across levels.

Pragmatically, no scholar can know or study  
everything. For this integration we need partner-
ships across disciplines, and we must learn to speak  
the language of other scholars investigating the  
same or similar phenomena. We may learn that when 
economists speak of shirking (Kim, Han, Blasi,  
& Kruse, 2015), it appears similar to social loafing 
(Lount & Wilk, 2014). And when economists speak 
of moral hazard and the 1/n problem (Thompson, 
McWilliams, & Shanley, 2014), it reminds us of 
social dilemmas in social psychology (Bridoux &  
Stoelhorst, 2016; Van Lange, Joireman, Parks, & 
Van Dijk, 2013). In the process, we may begin to 
recognize how economic forces at the national and  
global level such as the labor market affect the feel-
ings, decision making, and actions of individuals 
within families or employees in particular organiza-
tions. Working with engineers, we may discover that 
they think about the effect of individual “forgetting” 
over time on team productivity (Nembhard, 2014; 
Shafer, Nembhard, & Uzumeri, 2001) and that 
failure to consider forgetting as a process leads to  
an incomplete picture about what makes some teams 
more effective than others. We propose that social 
scientists should make a concerted effort to work 
with scholars across diverse disciplines to explore 
other levels of analysis and to think more broadly 
about the causal systems at play. This may improve 
our collective understanding of why things happen 
the way they do.

Principle 1: Adopting a holistic, open 
systems view of social systems and 
building multilevel theory to account 
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for phenomena will reduce the like-
lihood that important causal variables 
will be omitted.

CAUSE AND EFFECT COVARIANCE

The next issue we contemplate as a vexing challenge 
is condition (b): that the cause and effect have to  
be related (covary). It is nice to believe that when  
X happens, Y follows consistently and determinis-
tically. This certainly would allow us to build a 
strong causal theory for X to Y effects. However,  
two key issues limit our ability to see such relation-
ships: probabilistic outcomes and equifinality. First,  
when dealing with social phenomena, most outcomes 
we observe are probabilistic. It’s probably nearly 
axiomatic that if you are hungry, you eat. There’s a 
clear causal connection: hunger → eating. If you  
are hungry and it’s lunchtime, do you always eat?  
Do you always stop your work to go get lunch?  
Do all people eat at lunchtime when they are 
hungry? Do people only eat when they are hungry? 
If we required hunger to precede eating and hunger 
to be associated with eating each and every time that 
hunger is present, and if we further required that 
in the absence of hunger, eating would not occur, 
how well could we establish the causal link between 
hunger and eating? The simple answer is that we 
cannot do it if we require such deterministic and 
absolute relationships.

In a multilevel system, we must take into account  
multiple factors across levels and assume that they  
relate to the outcome in a probabilistic, not determin-
istic, fashion. In addition to hunger, eating behavior 
at lunchtime may be influenced by contextual factors 
such as workload (is there a chapter to be finished?), 
social influence (are others going to lunch and 
inviting you?), and cost (is lunch expensive at the 
diner?). It is influenced by individual factors such  
as memory (did I bring my lunch today?), self-image 
(is it okay to eat?), and so forth. When we combine 
the various factors, we can begin to see the causal 
patterns at play, but it’s important to recognize that 
outcomes are caused by combinations of input 
factors, often across levels.

One approach to determining causal patterns is to  
conduct the necessary condition analysis (Dul, 2016). 

In multicausal situations in which many factors 
contribute to outcomes, identifying those factors 
that are necessary but not sufficient to generate the 
outcome is helpful. Within a multilevel system,  
this can allow us to begin to parse the causal system 
into its dynamic components. Necessary conditions 
include those that are essential, critical, and not easily 
replaced by other factors but that are not sufficient 
by themselves to generate the outcome.

The second issue is equifinality. Multilevel and  
open systems are often characterized by the principle 
of equifinality, which means that a system can reach 
the same final state from differing initial conditions 
and by a variety of paths (Katz & Kahn, 1978).  
Katz and Kahn (1978) stated, “The equifinality 
principle simply asserts that there are more ways 
than one of producing a given outcome” (p. 30). 
If there are different paths to the outcome, then it 
also means that a given cause will inconsistently 
covary with the phenomenon of interest. In closed 
systems, the same initial operating parameters and 
inputs yield consistent outcomes. In open systems, 
there are many paths to any given outcome, and 
thus, many ways to achieve any given outcome. For 
example, employees might become more committed 
by treating them fairly and justly (Colquitt & Zipay, 
2015), involving them in important decisions (Cox, 
Zagelmeyer, & Marchington, 2006), or empowering 
them to work in a more autonomous manner 
(Avolio, Zhu, Koh, & Bhatia, 2004). In short, there 
may be no single X that results in Y. There are many 
Xs and permutations of X, as well as other factors 
such as Z, W, and Q. To make the point, K. H. Roberts, 
Hulin, and Rousseau (1978) quoted Piaget (1971, 
p. 37): “Behavior is at the mercy of every possible 
disequilibrating factor, since it is always dependent 
on an environment which has no fixed limits and is 
constantly fluctuating” (p. 57).

How, then, do we establish causality when we 
don’t know when or whether X will covary with Y 
(or whether Z, W, or Q will also covary with Y)? 
Again, the solution is to adopt a more holistic and 
integrated view of the phenomenon of interest.  
If we incorporate factors across levels and see that 
X probabilistically covaries with Y and also that A, 
B, and C covary with X and Y, then we can begin to 
build models of the conditions under which X will or 
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will not covary with the Y outcome. We suggest that 
even though inputs from multiple levels are complex 
and dynamic, there are predictable dynamics that 
can be quantified and understood if we examine the 
system as a system. We can also begin to identify  
the necessary conditions for phenomena (Dul, 2016).

It’s not easy, but we must find and explore the 
multiple paths to the outcomes so that we can better  
understand the conditions (and boundary conditions) 
in which the cause and effect are related. This is more 
important than scholars might readily acknowledge. 
For example, within applied psychology, there is a 
belief that hiring top performers (X) will yield high 
performance (Y). This tends to be true . . . except 
when it isn’t (Groysberg, Nanda, & Nohria, 2004).  
What might affect the ability of stars to perform 
in a new job? Factors include the technology of 
the system, the social support of the new work 
group, firm resources, and developmental culture 
(Groysberg, 2010). We cannot assume simple 
X → Y causal patterns when equifinality and 
probabilistic outcomes exist. Yet, just because it’s 
difficult doesn’t mean we shouldn’t try. As K. H. 
Roberts et al. (1978) stated,

We can and should try to observe, 
quantify, and explain regularities in 
responses of individuals and groups  
in organizational contexts. By regulari-
ties we do not mean there must be a  
one-to-one correspondence between  
a stimulus and a response or between 
two responses. (p. 6)

These efforts will result in the development of multi-
level nomological networks. Nomological networks 
are interlocking systems of constructs and relation-
ships that constitute the fundamental components of 
our theories (cf. Binning & Barrett, 1989; Cronbach 
& Meehl, 1955; Messick, 1995).

Principle 2: Adopting a holistic, open 
systems view of social systems and 
building multilevel theory to account 
for phenomena will improve our under-
standing and increase the likelihood 
that causal relationships will be properly 
specified.

CAUSE AND TEMPORAL PRECEDENCE

We now turn our attention to the final remaining 
condition for establishing causality—condition (a),  
that the cause must temporally precede the effect.  
This requirement seems both obvious and reasonable. 
If X is to cause Y, then surely X must precede Y 
in time. In some ways, however, this condition of 
determining causality may well be the most difficult 
of all to establish in multilevel open systems for 
three reasons: scaling of time, lagged outcomes,  
and fragile homeostasis.

Scaling of Time
Scaling of time refers to the notion that the rate at 
which processes unfold often varies across the level 
of hierarchy within a system. To discuss time, we 
must first recognize that time can cut across all 
focal levels yet can also exist at a lower level than 
the focal level. All units, whatever the level, change 
or evolve in some way. This means that repeated 
observations of a given entity (e.g., person, group, 
organization) reside at a lower level of analysis than 
the level of the entity itself (e.g., within-person, 
within-group, within-organization). For example,  
if data on student reading proficiency were collected 
four times throughout the academic year, then 
the repeated observations over time would be 
considered a within-person (student) factor.

However, this is not to imply that all observations 
over time reside at the lowest level. To make this 
statement clear, we provide an example. Assume 
we are interested in employee performance and 
believe it is affected by the employees’ levels of task-
specific self-efficacy and their individual levels of 
conscientiousness. In addition, we hypothesize that 
individual-level performance is also influenced by 
organizational culture. To test these hypotheses, we 
measure employee performance over four quarters  
with self-efficacy assessed each time (within-persons). 
We measure employee conscientiousness once, at the 
beginning of the study (person-level). We obtain a 
measure of organizational culture based on a survey 
completed the previous year by employees and 
subsequently aggregated up to the organizational 
level (organizational level; i.e., all individuals 
residing in a given organization are assigned the 
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score for culture). In this model, time exists at the 
bottommost level, because observations take place 
within individuals (time or quarters), individual 
conscientiousness is at Level 2 (individual), and 
organizational success (i.e., previous performance) 
at Level 3 (organizational):

Level 1  Ytij = p0ij + p 1ij(Self-Efficacytij) + etij

Level 2  p 0ij = β00j + β01k(Conscientiousnessij) + r0ij

p 1ij = β10j + r1ij

Level 3  β00j = γ000 + γ001(Organizational Culturek)

+ u00j

β01j = γ010 + u01j

β10j = γ100 + u10j.

In most hierarchical linear or random coefficient 
models, time is treated at the lowest level. Now 
imagine the same study but instead of a single 
measure of organizational culture based on the 
previous year’s annual culture survey, we instead 
obtained ratings of culture each quarter. This 
situation creates substantial complexity not present 
in the previous example because we cannot simply 
stick several observations of organizational culture 
under the level of individuals. Time is a lower level 
than each entity, but multiple observations over time 
do not necessarily exist at the bottom rung of levels 
effects. In this latter example, we might be interested 
in the magnitude and trajectory of organizational 
culture. For example, if the organization is increasing 
in its culture for innovation, then perhaps that 
stimulates individuals to try harder and perform 
better, whereas decreasing culture for innovation 
might have the opposite effect. Conversely, from 
a social loafing perspective, perhaps individuals 
try less hard when the organization is doing 
increasingly well, but they work harder if the trend 
is diminishing because they perceive a threat to the 
organization (and therefore, their jobs).

Our typical multilevel model is not generally well 
suited to handling analyses of this type because we 
are now looking at intercepts and slope coefficients 
of the higher level construct (i.e., culture) over time 

as inputs to the lower level effects. Normally the 
intercepts and slope coefficients of the lower level 
are used as outcomes to be predicted by higher 
level effects. Here we have intercepts and slope 
coefficients of both lower level and higher level 
entities. It can be done, but it’s not business as usual, 
and we can’t simply tuck repeated observations 
under individuals as a lower level factor.

We introduced this example because entities 
evolve over time, and temporal effects may reside 
at higher or lower levels depending on what’s 
being measured (and when it is being measured). 
However, temporal assessments always reside at a 
lower level than the entity being measured because 
they are nested within the entity or unit. We also 
used this example because it brings up a second 
factor: the scaling of time. It is generally understood 
that processes at lower levels take place more rapidly 
than higher levels. Chemical transition states have 
incredibly short lifetimes of a few femtoseconds 
(10–15 seconds), the time required for electron 
redistribution (Schramm, 2011), and neurons fire 
in milliseconds (Diba, Amarasingham, Mizuseki, 
& Buzsáki, 2014); people may make decisions in 
split-seconds (G. A. Klein, 1998), whereas other 
behaviors or decisions might take minutes, hours, 
days, or even longer to unfold (e.g., Bragger, Hantula, 
Bragger, Kirnan, & Kutcher, 2003). If we wish to  
say X must precede Y to establish causality, what 
does this mean when all parts of a multilevel system 
are in motion and some parts move or evolve more  
rapidly than others? Furthermore, various relation-
ships may have rhythms or patterns over time in 
addition to having different scaling (Mitchell & 
James, 2001; Zaheer, Albert, & Zaheer, 1999).

We might ask, “Does the cue ball cause the  
eight ball to go in the pocket?” If the cue ball moves 
first and strikes the eight ball, and then the eight ball  
goes in the pocket, we may be able to argue that the 
cue ball caused the eight ball to go in the pocket. 
What if we ask, “Does training in billiards cause the  
eight ball to go in the pocket?” Training is a process 
that takes place over weeks, months, and years, 
whereas the strike of a cue ball takes a fraction of a 
second. How do we relate training, with its long time 
frame, with the eight ball going in a pocket in less 
than a second? Additionally, training effects often 
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dissipate with time. We face similar challenges when 
trying to relate something like FAA regulations to 
aircrew behavior on a flight.

It doesn’t seem controversial to suggest that FAA 
regulations alter flight crew behavior. That’s their 
raison d’etre. But how would we measure and model 
this relationship? It would be difficult. If we gather 
measures of the FAA regulations today and relate them 
to pilot behavior tomorrow, we wouldn’t see much, 
if any, relationship. X (FAA regulations) most likely 
causes Y (pilot behavior), and we see and measure X 
preceding Y. However, we are unlikely to detect the 
relationship because X is nearly invariant over this 
time window. This is true even if we measured FAA 
regulations first and then assessed pilot behavior 6 
months later. FAA regulations evolve over months 
and years, whereas aircrew behavior can take place 
in minutes, hours, and days. We have a mismatch  
in timescale associated with levels.

To see the causal connection between FAA 
regulations and flight crew behavior, we require 
either molar observations that transcend time  
(e.g., number of regulations or content of regula-
tions; aircrew safe landings, aircrew errors, flight 
disruptions over time) or multiple observations over 
time at the timescale of each of the entities involved 
(regulation time 0; aircrew safety time 1; regulation 
time 1; aircrew safety time 2; and so forth). Thus,  
we need to know the durations, scaling, and time  
lag (Mitchell & James, 2001; Zaheer et al., 1999).  
As an illustration, if the idea is that FAA regulations 
involving pilot training influence aircrew behavior, 
then we might explore the impact of this intervention 
using an interrupted time-series design over years 
or decades wherein we collect data on pilot behavior 
both before and after changes were made regarding 
FAA regulations (Shadish et al., 2002). The types  
of measures of FAA regulations would depend on  
what is being measured and the rate at which FAA 
regulations can evolve. The time frame for the 
subsequent assessments of aircrew behavior would be 
dependent on whether FAA changes are likely to have 
immediate impact or whether it takes 6 months or a 
year to see the changes. Pick the wrong time frame 
and nothing will be seen (George & Jones, 2000). 
Another option might be to approach the question 
qualitatively, talking with pilots and regulators 

before and after the changes to see what evidence 
might exist for various causal relationships.

The point being made is that powerful causal 
influences of higher level variables can be hidden 
because of differing time frames across levels and 
the inability to connect the time frames across  
levels in a meaningful fashion. Governmental laws 
(e.g., Civil Rights Act of 1964) almost certainly 
affect human behavior, but getting a quantitative 
measure of governmental regulation to correlate 
with specific individual behaviors may prove difficult 
unless we pay attention to the role of time.

We can’t ignore important causal influences of 
higher level variables simply because they evolve 
more slowly or because it’s difficult to assess causality. 
Some of the most important variables may be of  
this sort—slowly changing, difficult to measure,  
yet powerful as a causal antecedent.

Lagged Outcomes
The second issue relevant to time and temporal 
precedence in multilevel systems is the potential 
delay between a cause and the effect. Consider 
a study that purports to examine whether new 
CEOs tend to implement a new strategy that affects 
organizational performance. If we stay at the CEO 
and organizational level and do not approach this 
question from a multilevel systems perspective, 
then it might seem reasonable to assess the outcome 
a year later. But if we adopt a more sophisticated 
multilevel perspective, we may realize that CEO 
changes in strategy unfold at different rates across 
different levels across the organization. Consider 
an organization that hires a new CEO. She comes 
on board and after a few months of talking with 
executives, employees, and customers, she decides 
on a new strategic approach for the company. 
The top-level executives then work on plans, the 
organization’s information technology professionals 
identify technologies to enable strategic pursuit, 
human resources decision makers implement changes 
to organizational structure and culture, training 
and development specialists train employees, and 
everyone adjusts to the inevitable bumps along the 
way. Sometime later the strategy begins to effect 
changes in relationships with customers, and as 
word spreads among customers through marketing 
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and spillover effects, changes in sales and earnings 
become apparent. How long might it take for the 
CEO’s changes to show their impact on return on 
equity measures? Is a year enough? Two years?  
The delayed effect on outcomes can easily mask 
our ability to detect relationships (covariance) if we 
don’t think about the multilevel system generating 
those outcomes.

Fragile Homeostasis
The final issue to consider with the idea of seeing 
the cause preceding the effect in a multilevel system 
is the notion of fragile homeostasis. This is related  
to the idea of lagged effects, but it’s the result  
of a distinct process. Lagged effects take time to 
manifest, but there’s a smooth and even connection 
to the outcome. The challenge is getting the timing 
right in order to unveil the causal connection. 
Fragile homeostasis and homeostatic breakdown  
(or breakout) is different because it is more abrupt.

Complex social structures ranging from teams to 
governments and societies exist in a state of quasi-
homeostasis. Many social collectives (e.g., teams, 
schools, organizations, professional societies) have 
a clearly defined structure and set of processes 
that allow them to exist independent of individual 
membership. Members may come and go, but the 
overall structure of the social collective remains 
largely static. The higher level entities are in 
homeostasis, but it is a partial homeostasis because 
they are changing, growing, shrinking, and evolving. 
When a cause enters the system, it may exhibit 
no easily discernable effect on the outcome, yet 
a change may occur. Over time the social system 
can reach a critical state preceding homeostatic 
breakdown, when abrupt change can take place.  
It’s similar to conditions in chemistry when water 
can be superheated yet not boil. Then, when jostled 
even slightly the water roils and boils over the edge 
of the cup. Or conversely, liquids can be supercooled 
but still in a liquid state, but then the smallest 
perturbation can result in a nearly instant shift to a 
solid state. George and Jones (2000) referred to this 
process as discontinuous change.

What does it look like when applied to social 
structures? Consider Rosa Parks. She didn’t cause 
the civil rights movement. Society was pressurized, 

with inequality, prejudice, and even violence creating 
differences in quality of life and opportunity for a  
large segment of the population. As slight was heaped 
upon slight, the social context became ripened for 
a phase shift—a change to something new. Then 
something happens to disturb the system and the 
structure abruptly changes. For another example, 
the assassination of the Archduke Ferdinand didn’t 
cause World War I. The world was poised for war 
and the assassination precipitated the outcome. Teams 
abruptly coalesce and rally to become something 
special, and they sometimes explode unexpectedly. 
Organizations appear fine until a tightly wound 
spring such as excess leverage precipitates a dramatic 
fall. Marriages seem fine until financial difficulties 
rattle the relationship.

Fragile homeostasis and homeostatic breakdowns 
(or breakouts) make it difficult to determine whether 
the temporal sequencing of X before Y is in fact 
causing Y. Perhaps X does cause Y, over time, creating 
a state of fragile homeostasis, but then Z occurs 
and creates the homeostatic breakdown and abrupt 
phase shift in Y. As a result, we may ascribe the 
cause to Z, not X, but both Z and X could be the 
primary causative factor creating the breakdown 
in fragile homeostasis. Consider a student who has 
been generally unhappy and disconnected for a 
large number of years. What causes the student to 
drop out of school isn’t necessarily some specific 
triggering event, Z (e.g., moving to a new school 
because a parent takes a new job, a failing grade), 
but rather Z creates a context in which the impact  
of X on Y became more salient or pronounced. If X is 
educational engagement and Y is school satisfaction 
(or staying in school), then levels of engagement 
may be correlated with satisfaction. However, even 
the least engaged student may not plan to quit 
school unless some triggering event strengthens 
the relationship between lack of engagement and 
dissatisfaction (e.g., moving to a new school, failing 
a class).

Addressing the condition of temporal precedence 
is not an easy task to accomplish. Levels often operate 
on a different scaling of time, but fragile homeostasis 
and homeostatic breakdown can make the situation 
more complex to understand. Stars evolve over 
billions of years, but when the conditions are right,  
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massive stars can become supernovas within minutes.  
National governments and societies may lumber along, 
and it’s business as usual for decades or centuries, 
but then when conditions are right, homeostatic 
breakdown takes place and revolutions occur.

We can and must do a better job of attending to 
the role of time in the complex open environments 
we call multilevel systems (George & Jones, 2000; 
Mitchell & James, 2001). We have to think more 
carefully about time-boundedness, the role of time 
scaling, lagged effects, and homeostatic breakdowns. 
As K. H. Roberts et al. (1978) stated:

Many relations we study are time- 
and place-bound. That is, a relation 
observed in an organization today may 
not be observed in another organization 
and may not be observed in the same 
organization next year. Although we are 
reasonably sensitive to environmental 
influences on relations, we are generally 
insensitive to the time boundaries of 
our data. (p. 22)

We tend to be insensitive to the time boundaries 
and evolutionary processes of our theories. We 
haven’t even mentioned reciprocal dynamics and 
the mediation that occurs between any putative 
cause and effect (cf. James et al., 1982; Mathieu & 
Taylor, 2007; Zhang, Zyphur, & Preacher, 2009). 
For every action and reaction, there’s a potential 
intermediating effect that might also deserve 
examination, and sometimes it is the reciprocal 
effects of X and Y over time. Additionally, there can 
be other variables mediating effects. Indeed, between 
any two mediators there exists the possibility of  
a third mediator. If we want to truly understand a 
system, we may need to capture the micromediation 
processes taking place over time. Another issue  
is that in an open system for every 0 point in time, 
there’s a t−1 point in time. That is, in open systems 
there’s always the possibility of a time frame that 
precedes the time frame being investigated, and the 
preceding time frame could contain a key causative 
factor. With all this challenge and complexity,  
what should we do?

Social scientists can begin to address these issues 
by being more aware of the multifaceted ways that 

time exerts effects in multilevel contexts. With the 
long time frame for some effects, we may need to 
borrow from other disciplines such as historio-
graphy, ethnography, and econometrics to consider 
how best to predict and test potential cause and 
effect relationships. We may also need to use both 
qualitative designs and computational modeling  
or simulations to understand the dynamics involved 
(Kozlowski, Chao, Grand, Braun, & Kuljanin, 2013). 
We can borrow ideas from other sciences, even 
chemistry, astronomy, or physics, to metaphorically 
(and perhaps analytically) grasp how partially 
homeostatic systems in a quasi-equilibrium function 
as causal influences. We have to try new and different 
approaches to our theoretical and mathematical 
modeling of causes and effects.

Principle 3: Adopting a holistic, open 
systems view of social systems and 
building multilevel theory to account 
for phenomena will enable scholars 
to more effectively detect cause and 
effect patterns over time, with lagged 
effects, and in the presence of fragile 
homeostasis.

SUBJECTIVE VERSUS OBJECTIVE EFFECTS

When trying to identify the multilevel effects at play  
within a system, we should consider the distinction 
between subjective, or perceived, effects and objective 
or physically manifested effects. Can effects at the 
level of cosmological events affect human behavior 
at work? Perhaps this is a laughable question, 
because who would care? The skip between levels 
seems simply too vast. But consider that objective 
cosmological effects have physically shaped our 
reality, and they include asteroid strikes that have 
led to the large-scale extinction of dinosaurs and 
supernovas that may have disrupted our atmosphere 
and caused small-scale extinctions. Mass coronal 
ejections have disrupted our electrical grids and are 
highly likely to do so again in the future. We can 
consider the impact of solar flares on communication 
patterns of individuals and societies. We don’t need 
to turn to astrology to find strong evidence that 
physical cosmological events can and most likely 
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will shape human behavior in the future. However, 
the vast scaling of time influences whether we attend 
to these issues.

The long time frame for such events makes 
studying such phenomena uninteresting to most 
organizational scientists. It’s unlikely to happen in 
their lifetimes, and it’s a rare event, so why bother? 
Yet these questions and issues are germane to human 
productivity and survival. Planetary-level effects 
such as climate change alter availability of food and 
water, and these will later affect geopolitical power 
and stability among nations. It’s difficult to consider 
these relationships and their impact on individuals, 
families, and organizations, but it’s important to try.

Cosmology or planetary change doesn’t have  
to manifest as a physical event to influence human 
behavior. As long as people think about and perceive 
cosmological events as important, then they will 
exert effects on people. For example, we would 
never advocate taking astrology seriously as a 
science. However, in 2012 as much as 42% of the 
U.S. population thought astrology was either “sort 
of scientific” or “very scientific” (National Science 
Foundation, 2014). For believers, it doesn’t matter  
if it’s real; it’s enough to believe. Thus, we can ask,  
“do astrological perceptions affect individual 
behavior?” Most likely they do for a subset of people. 
Ronald Reagan and his wife Nancy were said to  
have taken astrology seriously during his presidency; 
it affected the scheduling of important events (S. V. 
Roberts, 1988). Do others in work environments take 
astrology seriously? Might such beliefs affect perceived 
risk (Sjöberg & af Wåhlberg, 2002)?

We can also ask whether actual organizational 
policies affect employee behavior or whether percep-
tions and attributions about organizational policies  
matter more. We are reminded of a friend who 
lamented working long work weeks at a law firm 
when he had a newborn at home. We asked, “Doesn’t 
your firm have paternity leave policies?” He said, 
“Yes, but everyone knows you’ll never make partner 
if you take it.” In many respects, it doesn’t matter 
if the statement is true, because the statement is 
true for him. If he believes in his perceptions, then 
he will act accordingly regardless of whether the 
perceptions are objectively true. If such perceptions 
are shared, they manifest as collective constructs, 

shaping individual behavior whether or not they 
are accurate. There are many instances in human 
history of behavior being shaped not by reality but 
by the perception of reality.

Objective impact of lower level factors can exist. 
People can be exposed to chemical compounds, 
viruses, or bacteria that alters human chemistry and 
changes our cognitions and behaviors over time. 
Genetics (which focuses on the molecular level) 
can affect people. Using twin studies, researchers 
have found that as much as 30% of the variance 
in job satisfaction may be associated with genetic 
factors (Arvey, Bouchard, Segal, & Abraham, 1989).  
Changes in brain structure or chemistry over time  
clearly can shape behavior. Researchers have asso-
ciated ethical decision processes with neural activation 
patterns in the brain using fMRI techniques (Greene, 
Sommerville, Nystrom, Darley, & Cohen, 2001; 
Robertson et al., 2007).

Perceptions of lower level phenomena may  
be important too. If people think there are deadly 
germs all around them, then this will shape their 
behavior regardless of whether the germs actually 
exist. If people believe in a heritable trait theory of 
intelligence, then they will act and react differently 
to mistakes and errors than people who believe in 
malleable, contextually driven intelligence (Dweck 
& Leggett, 1988; James & LeBreton, 2012). Again, 
the more shared the perceptions, the more mutually 
reinforcing they become, eventually manifesting 
as higher level effects, even if they are higher level 
effects about perceptions of lower level phenomena.

Principle 4: Scholars must attend to 
potential objective and subjective 
effects across levels of analysis to build 
a more integrated understanding of  
how a multilevel system influences  
outcomes.

ON VARIANCE AND VARIATION

Our typical modeling approach for multilevel data 
is to gather data, set up identifiers for units at two 
or more levels, partition the variance into higher- 
and lower level portions, and then determine the 
significance of predictor variables at a particular 
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level for predicting the outcome variance at that 
level (cf. Dansereau et al., 1984; Raudenbush & 
Bryk, 2002). When modeling group effects, we are 
testing group predictors against the component of 
variance in individual-level scores that exists across 
groups. And when modeling individual level effects, 
we are testing individual predictors against the 
component of variance that represents variation of 
individuals within groups. This approach does well 
for what it is supposed to do: provide significance 
tests of specific effects within a given set of data. 
However, this approach will not tell us where the 
variance lives, unless we happen to get lucky and 
sample, measure, and analyze the correct variables  
at the correct level at the correct point in time.

By thinking of variance as a fixed pie to be sliced 
up into appropriate tests at various levels, we ignore 
some very important issues. First, the variance we 
see in our data may or may not be the important 
variance that exists. Second, we tend to collect data 
as a snapshot, yet phenomena unfold over time. 
Finally, we argue that variance is not a fixed pie. 
As shown in Figure 1.2, variance can increase and 
decrease over time, both within and across levels, 
as part of an adaptive or evolutionary process. 
Sometimes both individual and team variance 
can increase over time as in the propagation and 
adoption of innovations. At other times or in other 
contexts, individual variance can shrink while 
variance across teams can increase, such as when 
there are strong team effects influencing individual 
behavior. There are probably occasions when both 
individual variance within teams and variance 
between teams shrink. Perhaps this could be the 
result of strong socialization processes within an 
organization organized by units such as the military 
(James, Demaree, Mulaik, & Ladd, 1992). All of 
these patterns have profound effects on how much 
variance is seen at what level over time and our 
ability to see what is going on. This attaches to our 
previous conversation about time: what is increasing 
or decreasing over time and why?

Variance is not fixed to a particular level over 
time; it shifts and morphs as social systems unfurl 
their effects. Consider a brief thought experiment: 
Imagine for a moment that we have 500 individuals 
within 100 teams. On a measure of work satisfaction 

(assessed using a 10-point Likert-type scale), nearly 
all of the teams have a mean work satisfaction score 
of 8 (within sampling error). All of the individual-
level ratings of work satisfaction (i.e., each employee 
within each team) also hover around an 8. Thus, 
there are no significant differences between teams and 
no significant differences within teams (i.e., between 
individuals nested in a particular team). At what 
level in the system does the action exist for the work 
satisfaction construct? Answer: No one can tell you 
on the basis of variance. Individual and team effects 
are indistinguishable, and there’s no evidence to 
suggest there is a particular level effect (or there are 
both individual and team effects and they can’t be 
separated).

Now, what if we told you that previously, the 
individual-level scores vary widely from 1 to 10, 
but there were no specific team-level differences? 
Assume we’ve collected data moment by moment 
for many weeks. Scores are all over the place in the 
beginning, but there’s a small team of three people, 
with one new charismatic member, all with scores 
of 7 or 8. Then we see the small group with scores 
around 8 expand to five. Eventually, the entire work 
unit averages close to 8. Over time, the initial team 
solidifies, individual scores drawing tighter around 8.  
Abruptly a second team rapidly transitions from 
scores ranging from 1 to 10 to a mean around 8. 
Then a third team follows the same pattern. This 
continues until all 100 teams average near 8. What 
is the level at which the system is operating? Clearly, 
the initial level was individual within team, with 
emergence or social contagion processes drawing 
people together. The next phase, however, operated 
at the team level, with the contagion “jumping” 
from one team to another. Perhaps because of the 
initial team, the organizational leaders realized 
there was a better way to do things and began to 
implement new best practices, one team at a time. 
Or perhaps other teams saw something working  
for one team and incorporated the practices into 
their own unit.

We can imagine other possibilities. What if the 
means of each team vary widely but individuals 
within each team begin to converge on similar values 
so that one team averages near 3 while another 
averages near 7 or 8, with all members within a 
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FIGURE 1.2.  Variance shifts over time.
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team clustering. For a long time the teams vary from 
one another, but individuals within teams converge 
around their respective team means. After some 
time, all teams begin to slowly converge toward 8,  
so that the final result is that both individuals and 
teams hover around 8. This is a very different pattern 
than the preceding one. This situation clearly indicates 
that team context effects exist, so at least part of the 
action is at the team level. Over time, however, the 
teams converge, perhaps through the sharing of team  
best practices that make all of the teams more effec-
tive and therefore more satisfying. This might occur, 
for example, if innovation diffuses across teams.

There are three key points to consider in this 
thought experiment. First, by examining how variance 
changes across levels over time, we went from having 
no clear idea as to how the multiple-level system was 
operating to having a pretty good idea of what might 
have happened in each situation. Second, we see that 
effects can shift up and down levels over time as the 
variance components shift. Third, we have to measure 
processes over time to see the change in variance 
components.

The important issue to keep in mind is that 
structures or entities across levels come and go. 
There was once no Google, but a couple of people 
got together and began to change the world. Perhaps  
Google will continue to change the world for 
centuries, but it’s worth remembering that a large- 
scale survival analysis suggested the average lifespan 
of a business is about a decade (Daepp, Hamilton, 
West, & Bettencourt, 2015). Teams form, storm, 
norm, perform (Chang, Bordia, & Duck, 2003; 
Mannix & Jehn, 2004) and then many disband, get 
reassigned or restructured, or become incorporated 
into some other entity. Members come and go and  
sometimes they change the character of the teams 
they join or leave (Mathieu & Chen, 2011). Most 
social structures have some degree of impermanence.

There was a time when there was little or no 
variance across large manufacturing companies in 
the use of assembly line production technologies. 
Companies didn’t use this approach, so the variance  
was near zero—no organizational effect on assembly 
line technology. Then certain companies implemented 
the assembly line system, and variance on this 
technology increased. Other large manufacturing 

companies began to adopt the approach, and 
variance across companies increased in the use of 
this technology. Now an organizational effect on the 
use of assembly lines could be detected; there was 
unit-level variance. However, variance in the types 
of jobs performed by each individual decreased as 
the assembly line technology was implemented. 
Eventually, nearly all large manufacturing companies 
adopted assembly line production methods, and the 
variance returned to near zero.

Where does the level exist for the diffusion of 
innovation of assembly line production techniques? 
It may exist at the organizational level, but many 
factors are in operation and we could only detect 
the organizational effect using organizational level 
prediction of variance during a small window of 
time (George & Jones, 2000; Mitchell & James, 
2001). Today we won’t see much variance in whether 
or not assembly line technologies are used. But these 
manufacturing systems have a profound effect on 
how employees work and feel on the job. Are we to 
say that there’s no organizational effect of assembly 
line production technologies on employee behavior 
because we can’t see variance? This would be a highly 
misleading conclusion because everything about 
the system, which exists at the organizational level, 
affects what employees do (and cannot do).

As scholars, we must be more sensitive to how 
variance changes over time and across levels. This 
means we have to think more carefully about the 
meaning of time, its scaling, and the types of effects 
we may see (lagged, homeostatic breakdown). 
By observing how units at multiple levels shift in 
variance, we can begin to detect the fundamental 
processes at play (e.g., social contagion, innovation 
diffusion). Failure to see variance does not mean that 
a higher level effect does not exist. The effects may be 
at play and they may be profound and powerful, but 
precisely because they are profound and powerful, 
there’s little variance across higher units.

Returning to the example of FAA regulations: 
They work so everyone uses them, and the variance 
is not discernible. However, it drives the system, 
process, and outcomes regardless of the variance 
components. One merely needs to look at the history 
of aviation (e.g., Bryson, 2013) to see the reckless 
and wild early days of flight. Indeed, variance in 
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flight safety was high in the 1930s. The FAA came 
to exist to reduce this variance and create standard 
operating procedures that would lead to flight safety, 
and it worked. The variance is gone but the system 
is there, nevertheless.

Principle 5: Developing a deep under-
standing of complex multilevel systems 
requires scholars to move beyond  
snapshots of variance to reframing the 
relative partitioning of variance within 
and between units over time.

DUAL PROCESSES IN  
MULTILEVEL SYSTEMS

A final issue to consider when thinking about 
identifying the correct level are the dual processes 
of variance creation and restriction in multilevel 
systems. As shown in our earlier examples, units 
within a multilevel system change, adapt, and evolve 
over time. Families, teams, organizations, societies, 
and nations are not static entities. For example, a 
given team has not existed for an eternity. It comes  
into being for an externally driven purpose or because 
a collection of individuals shares a common vision 
and set of goals. Eventually, a group of individuals 
begin to restrict variance on key attitudes and share 
core values. This is one example of the process of 
emergence (Kozlowski et al., 2013). We see variance 
between groups/teams increasing and variance within 
teams decreasing on core values. Teams can also 
experience divergence, cases in which team members 
increasingly drift apart, eventually leading to the 
dissolution of the team.

The dual processes of variance creation and 
variance restriction forge and dissolve higher and 
lower level entities and their associated effects. The 
processes of variance creation and restriction occur 
both within units as well as across units. Exhibit 1.1 
introduces some potential factors that can create  
or restrict variance within or across units.

This list is not meant to be exhaustive. Instead, 
it is meant to be a point of departure for thinking 
about the systems and process that drive variance 
creation and reduction and eventually lead to the 
existence and dissolution of higher and lower 

entities and their associated effects. We attempt to 
highlight how countervailing forces act to create 
levels effects.

March (1991) described exploration as the process 
of experimenting, investigating, and innovating 
to find new products, markets, technologies, and 
services. The process of looking for and finding 
these new innovations necessarily creates variance 
across work units and organizations as each pursues 
a distinct path. Eventually, however, once the 
innovation is created or identified, organizations 
must become organized to take advantage of, or 
exploit, this new opportunity. Apple created the  
iPod and organized its marketing and manufacturing 
units to pursue the common goal of taking advan-
tage of this new product. Initially the systems and 
processes innovating the iPod created variance, 
and then the systems and processes geared to take 
advantage of the iPod reduced certain types of 
variance (e.g., product goals). It happened at the 
industry level as well. The entry of the iPod created 
variance as other organizations rushed to take 
advantage of the opportunity, and eventually many 
technology players had some type of mp3 player on 
the market, reducing variance. We’ve seen this cycle 
many times, ranging from electricity, to the Internet, 
to smartphones and tablets.

There are similar forces with innovation and 
assimilation. New ideas, technologies, services, and 
markets can create competitive advantage for certain 
firms or teams. This creates variance among units as  
some are “haves” and some are “have nots.” As other 
units see the success of the early adopters, they 
are more likely to assimilate the innovations into 

EXHIBIT 1.1

Variance Creation and Restriction Processes

Variance creation Variance restriction

Exploration Exploitation
Innovation Assimilation
Serendipity Structuration
Adaptation Elimination
Differentiation Conformation
Contagion Truncation
Deregulation Regulation
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their own systems and structures. Over time, best 
practices become institutionalized, and nearly all 
units become “haves,” thus restricting variance. 
Thus, we see that variance becomes an indicator for 
the ebb and flow of new approaches toward success. 
This sometimes results in a physical assimilation 
such as in an acquisition when a firm acquires another 
for people, products, or technologies. Assimilation 
of values or process approaches happens at not only 
the organizational level but the teams level as well, 
as some teams observe others engaging in practices 
that enable success. Over time, variance increases as 
some teams branch out, then variance decreases as 
teams become increasingly similar due to consistency 
in values, practices, and technologies. Most fire-
fighting, hospital, and police units are similar, yet 
some show variance on key factors. Some hospitals 
are embracing a professional and open approach to 
communication, some police units are reaching out 
to the community, and some firefighting crews are 
embracing diversity. This creates variance and as 
we see which approaches work, other units adopt 
effective approaches, eventually reducing variance.

Serendipity should not be discounted as a force 
for variance. Random mutations create speciation 
over time, and random errors can result in fortunate 
discoveries (R. M. Roberts, 1989). Post-it® notes  
were the unexpected result of an adhesive experiment. 
For some time, 3M was the only firm to have this 
technology but over time other firms obtained it, 
creating variance. Now it seems that low adhesion 
adhesives are used in products everywhere, and 
many firms have it, reducing variance. Through 
structuration organizations become highly structured 
to take advantage of the new discoveries. Random 
changes that result in powerful positive outcomes 
eventually lead to new structures that are designed 
to take advantage of the serendipity. Teams and other 
social units can experience this. There has been a 
long tradition of people who get together to play 
games socially. Some of these groups began doing 
it online and today, many social gamers interact 
virtually. Groups adopt what works for other groups, 
eventually restricting variance of certain types.

The forces described above create adaptation 
at the individual, group, and organizational levels. 
Entities that adapt and evolve continue to exist as 

the context changes. However, failure to adapt to 
contextual forces results in elimination or dissolution 
of the entity. Adaptation creates variance until the 
adaptation is generally embraced or assimilated 
across units. Elimination reduces variance as units 
that fail to adapt fall out of existence. These forces 
can have strong influences on our ability to detect 
higher level effects. Consider, for example, the idea  
that strategic human resource management practices 
need to be aligned with organizational strategies. 
This seems obvious, even intuitive, yet the empirical 
research supporting this perspective is notably weak  
(e.g., Huselid, 1995). One possibility is that organiza-
tions that have not aligned their talent strategies 
with their business strategies are eliminated from 
the competitive landscape. If true, it would mean  
a key quadrant enabling detection of the alignment 
hypothesis would be missing. In other words, if 
the theory that businesses need to align their talent 
strategies with their business strategies to succeed 
is correct, then the ability to test that theory would 
be compromised because the firms that fail to do 
so would drop out of the variance space. This can 
play out at the individual or team level as well. We 
might have a theory that people who are poor fits 
with an organization and who perform poorly have 
a different value system from those who are poor 
fits and perform well or those who are good fits 
and perform poorly. If we tried to run such a study, 
how many people do we expect to see remain in an 
organization who are poor fits, performing poorly? 
The elimination process would drive most of these 
people out. Adaptation and elimination processes 
can have profound effects on the variances we  
are able to see, both within and between units  
of interest.

We also see forces for differentiation and confor
mation. Some people, groups, and organizations 
embrace difference and actively try to be different 
from others. If everyone was the same, the world 
would be uninteresting. If all organizations are the 
same, there is no competitive advantage and they 
would all be subject to the tyranny of mediocrity. 
But there’s a certain inelasticity to difference. If an 
entity is too different, too out there, then it can 
struggle, whether the entity is an individual, team, 
or organization. There are pressures for conformity 
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that restrict variance. You wouldn’t go to a restaurant 
and expect wait staff to be rude or dressed in pajamas 
or both. Individuals can’t go to stores with pants 
on their heads and shirts on their legs. Part of the 
conformance effect is practical. Some things don’t 
work and they are eliminated from the repertoire. 
However, social constraints driving conformance 
are powerful but don’t necessarily have a pragmatic  
purpose. There’s no reason that certain hand gestures 
(e.g., the “okay sign”) have to mean something 
positive in some cultures and something negative in 
others. These are socially constructed interpretations. 
But conformance in each culture means that it is or 
is not appropriate to engage in the behavior. It’s true 
for organizational strategy, too. Businesses operate 
differently in China, Germany, and France than they 
do in the United States.

Social and physical contagion processes have 
the ability to generate variance through bottom-up 
emergence effects. An individual or small group of 
people can start a social movement, create a new 
product, or develop a better service, and this can 
cascade out through a team, an organization, an 
industry, or a nation. Physical contagion can cascade 
out as well, changing how people interact with 
each other. As the contagion takes hold, variance 
is created but over time, either it is assimilated or 
truncated. Social truncation occurs when opposing 
forces work to squelch, control, or sometimes adopt 
and assimilate the social contagion. Eventually, either 
contagion wins and variance is restricted because 
most units adopt the new “thing,” or truncation wins 
by squeezing the contagion out.

Regulation, including legislation, is designed to 
reduce variance by fiat, usually to enhance efficiency 
or increase safety. Regulations can also be derived 
from social construction. We have regulations 
intended to reduce risk in the finance industry, but 
they also restrict variance in the business practices 
and investment strategies that can be pursued. Some 
hospitals have regulations for surgical teams to use 
checklists because they’ve been shown to reduce 
surgical errors by ensuring that all teams engage in 
consistent effective practices. Likewise, the FAA has 
checklists for aircrews. We also have regulations 
for what people can do, what they eat, or how they 
act. The counter force for regulation is deregulation. 

By removing constraints on individual, team, and 
organizational behavior, we allow variation in 
behaviors and practices. At times such variation can 
result in innovation and adaptation, at other times  
it can result in negative outcomes.

We suggest that the dual forces of variance 
creation and variance restriction shape the formation, 
evolution, and dissolution of units across levels over 
time. Attending to how various types of forces affect 
variance will help us better understand the system, 
as a system, rather than thinking about piecemeal 
slices of the system. As Kozlowski et al. (2013) 
pointed out, the emergence of levels is complex 
because it incorporates both process and structure. 
Process involves dynamic interactions among entities, 
and structure is the manifestation over time of 
a collective property. Both process and structure 
show their effects by transitions over time, and we 
further suggest that process and structure evolve in 
response to the dual forces of variance creation and 
variance restriction over time. As Kerlinger (1973) 
discussed, the concept of variation, or variance, 
is essential to all scientific efforts as the research 
process seems to understand or explain variation.

We agree and take this statement further in 
two ways. First, we suggest that understanding 
phenomena in open systems requires an under-
standing and explanation of variation at multiple 
levels of analysis. Second, we argue that variance 
is not static; it shifts and changes over time in 
response to dual forces of creation and restriction, 
and this occurs at multiple levels. Third, we need  
to think about the variance of the system as a whole  
in order to understand the phenomena of interest. 
We can begin by examining variance of the compo-
nent parts, but eventually we need to build a  
more integrative understanding of the sources  
and outcomes of variance across levels.

SUMMARY

We suggest that researchers must think in more 
complex ways about the phenomena being studied. 
As Hanges and Wang (2012) noted, complex multi-
level and adaptive systems have tangled feedback 
loops among the system’s elements. As a result, 
causal influences flow in multiple directions within 
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the system and across levels. We have to think 
more carefully about the system as a system and 
work toward interdisciplinary understanding of the 
phenomena we care about.

As we progress, we have to take seriously the 
notion that even if there are multiple Xs across levels 
predicting Y, understanding which X is causing Y is 
challenging because X doesn’t always cause Y, seeing 
X precede Y doesn’t mean it is the only influence 
on Y, and not seeing Y when X is present doesn’t 
mean that X isn’t important. Additionally, we have 
to be much more serious about the role of time in 
multilevel phenomena. In particular, we have to 
be sensitive to scaling of time, lagged effects, and 
fragile homeostasis. Timescales can mask or enhance 
our observed of relationships among variables of 
interest.

Finally, we have to think about variance creation 
and restriction processes that can influence our 
ability to see and detect phenomena. Most things 
are in a process of dynamic change at different 
timescales. As a result, we should think about how 
different forces for variance creation and restriction 
operate over time to influence outcomes. Do laws 
affect marital behavior? Certainly. But if laws change 
slowly and we gather observations over a year when 
they are unchanging, we may not detect the effects 
unless we adopt qualitative approaches of inquiry.

We began with the question “What is the appro-
priate level?” The answer is, there is no appropriate 
level. The level is the system, which is what we 
should examine if we want to understand multilevel 
causality. The ability to examine the system depends 
on timing of observation, and bracketing is not 
enough. Our efforts to understand such multilevel 
systems may require new interdisciplinary approaches 
and a willingness to broaden our own perspectives 
and conceptualizations of phenomena at hand.
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A RULE FOR INFERRING INDIVIDUAL-LEVEL RELATIONSHIPS 
FROM AGGREGATE DATA* 

GLENN FIREBAUGH 

Vanderbilt University 

American Sociological Review 1978, Vol. 43 (August):557-572 

Under certain conditions aggregate-level data provide unbiased estimates of individual-level 
relationships. Here I present these conditions in the form of a single theoretical decision rule: 
bias is absent when, and only when, the group mean of the independent variable (X) has no 
effect on Y, with X controlled. This paper introduces this rule, demonstrates it for the general 
n-variable case, compares it with prior discussions of cross-level inference, and illustrates it 
with the 1930 census data used by Robinson (1950). The final section discusses the implications 
of this rule for the converse type of cross-level inference: the use of individual-level data to 
estimate aggregate-level relationships. 

Almost three decades ago Robinson 
(1950) warned sociologists of the dangers 
of using aggregate data to study individu- 
als. In his seminal paper, Robinson 
showed that correlations between vari- 

ables at the aggregate level differ from 
correlations between the same variables at 
the individual level. From this finding 
Robinson concluded that researchers 
should not use aggregate data to study 
individuals;1 those who did were said to 
be guilty of the ecological fallacy (Selvin, 
1958). 

However, as Hammond (1973:765) 
noted, sociologists (and other social scien- 
tists) have continued to use aggregate data 

1 The terms "individual" and "aggregate" refer to 
units of analysis; an individual need not be a person. 

* This rule was first presented, in a rudimentary 
form, in a fall 1974 methods seminar taught by Karl 
Schuessler. In refining and extending the ideas of 
that paper, I received helpful counsel from Leigh 
Burstein, John Cardascia, Lee Cronbach, Michael 
Hannan, and Elton Jackson, as well as from Pro- 
fessor Schuessler. Carol Meyer expertly typed and 
assembled the final draft. Of course, none of the 
above bears any onus for shortcomings in the final 
product. 
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to make inferences about individuals, be- 
cause appropriate individual-level data are 
often unavailable. In criminology, for 
example, deterrence theory suggests that 
the individual (not the aggregate) is de- 
terred, yet empirical investigations gener- 
ally have used aggregate data (for exam- 
ple, Tittle, 1969; Chiricos and Waldo, 
1970; Logan, 1972; Ehrlich, 1973; 1975). 
Inference across levels of aggregation 
(hereafter called cross-level inference)2 
also can be illustrated by studies of voting 
behavior, where the use of areal data for 
studying hypotheses about individuals has 
a venerable history (see, for example, 
Burnham, 1965; 1971; and the critique by 
Cowart, 1974). Other examples-from his- 
tory, political science, and economics, as 
well as from sociology-could be given of 
the substitution of aggregate-level data for 
unavailable individual-level data. 

Given the unavailability of individual- 
level data for many areas of interest to 
social scientists, one is not surprised to 
find that most methodological discussions 
since Robinson have sought to modify the 
strict prohibition against downward 
cross-level inference. The most important 
conclusion of these discussions has been 
that aggregate data do not always yield 
biased estimates of individual-level un- 
standardized regression coefficients 
(Goodman, 1953; 1959). This conclusion 
has two implications: first, there are cer- 
tain cases where, except for possible loss 
of efficiency (i.e., the variance of b-;ji is 
usually greater than the variance of byx; 
see Hannan and Burstein [1974:382]), 
downward cross-level inference can be 
made with impunity; second, if downward 
cross-level inference is made, regression 
coefficients should be used instead of cor- 
relation coefficients. 

After the demonstration that an 
aggregate-level regression coefficient 
need not differ from its individual-level 
counterpart, most studies sought to de- 
termine the conditions under which the 
regression coefficients do not differ-i.e., 

the conditions under which cross-level 
bias is absent. Two approaches are dis- 
cernible. The first approach could be 
called the contextual effects approach, 
since it sees contextual effects as the 
major source of bias (Hammond, 1973; 
Przeworski, 1974). The second approach 
is the structural equations approach or 
causal models approach (Blalock, 1964: 
97-114; Hannan, 1971a; 1971b; Hannan 
and Burstein, 1974; Burstein, 1974; 1975a; 
1975b; 1976; Hannan and Young, 1976); 
this approach formulates bias in terms of 
path models and uses econometric tech- 
niques to determine the expected value of 
the parameters.3 

In this paper I combine the two ap- 
proaches by employing contextual effects 
models in a structural equation frame- 
work. Two papers in particular stimulated 
this project: Hammond (1973) and Hannan 
and Burstein (1974). Hammond's paper is 
important in that it suggests the link be- 
tween contextual effects theory and 
cross-level inference. Hannan and Bur- 
stein's paper is important in that it 
provides a summary of the issues involved 
in cross-level inference as well as a com- 
pact statement of the logic and conclu- 
sions of the structural equations ap- 
proach. Briefly stated, Hannan and Bur- 
stein counsel researchers faced with the 
question of cross-level inference to con- 
sider the effects of the variable by which 
the data are grouped (schools, states, 
etc.). They show that, in the bivariate 
case, aggregate data give unbiased esti- 
mates of the individual-level relationships 
when any of the following is true: (1) the 
grouping variable (A) is uncorrelated with 
the dependent variable (Y) with the inde- 
pendent variable (X) controlled; (2) A and 

2 Cross-level inference can be either downward 
(the ecological fallacy) or upward (the individualistic 
fallacy; Alker, 1969: the use of individual-level data 
to make inferences about aggregate-level effects). 
Except where otherwise noted, by cross-level infer- 
ence I mean downward cross-level inference. 

This literature summary refers mainly to the 
sociological literature. The econometrics literature 
most often assumes that the researcher can choose 
the method of grouping, and discusses the relative 
efficiencies of different grouping methods (for exam- 
ple, Johnston, 1972: Chap. 7). Recent discussions in 
political science (Hanushek et al., 1974; Irwin and 
Lichtman, 1976) have contended that cross-level bias 
arisesfrom specification error. While the rule intro- 
duced in this paper is consistent with this contention, 
it identifies the source of bias much more specifically 
than does the generic term "specification error," 
and thus I judge it to be more useful to the sociolo- 
gist. 
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X are uncorrelated; or (3) the variance of 
X equals the variance of X, where X is the 
group mean of X. Hannan and Young 
(1976) confirm these findings in a Monte 
Carlo simulation containing two re- 
gressors. Burstein (1975a; 1975b; 1976) 
applies these findings to other empirical 
examples, and compares the results to 
those obtained using an approach 
suggested by Feige and Watts (1972). 

The utility of combining the contextual 
effects and structural equations ap- 
proaches is shown in this paper. First, the 
approach adopted here generates a par- 
simonious rule-the X-rule-for making 
inferences about individual-level relation- 
ships from aggregate data. The X-rule 
links cross-level bias to theory on group 
effects. Since group effects theory is 
well-known in sociology (e.g., Blau, 
1960), this rule often provides theoretical 
leverage to the sociologist who must de- 
termine whether cross-level inference is 
legitimate in a particular case. Second, 
this rule is easily generalizable ana- 
lytically to the n-variable case. This is im- 
portant since, as Hannan and Young 
(1976:2) noted, there are formidable ob- 
stacles to analytical investigations of the 
effects of grouping in regression models 
containing two or more regressors. Fi- 
nally, unlike most previous approaches, 
this approach focuses on the difference 
between the aggregate-level coefficient 
and the individual-level coefficient of 
interest (explained in Section III, below). 

Like most previous studies, this paper 
focuses on the conditions for avoiding 
bias4 where the variables of interest are 
interval scale (for the nominal scale case, 
see Duncan and Davis, 1953; Shively, 
1969; Iversen, 1973). Section I introduces 
the X-rule; first the bivariate case and 
then the multivariate case are examined. 
Section II discusses the theoretical in- 
terpretation of the X-rule, and its implica- 
tions for research. Section III compares 
the approach of this paper with previous 

approaches to cross-level inference. Sec- 
tion IV provides an empirical illustration. 
Finally, Section V discusses the implica- 
tions of this paper for analyses using only 
individual-level data, as well as summariz- 
ing its implications for analyses using only 
aggregate-level data. 

I. THE X-RULE: BIVARIATE CASE AND 
MULTIVARIATE CASE 

Introduction of Basic Ideas 
We begin with the simplest case: the 

relationship (slope) between a dependent 
variable (Y) and a single independent 
variable (X) in a population. If data on X 
and Y are available for all individuals in 
the population, the unstandardized re- 
gression coefficient, lyx, is obtained when 
Y is regressed on X (here, and throughout 
this paper, the greek letter ",p" is used to 
refer to population parameters; it does not 
refer to standardized regression coeffi- 
cients). If, on the other hand, all the indi- 
viduals in the. population are placed into 
mutually exclusive groups (precincts, for 
example), and an average (usually the 
mean) for X and Y is computed for each 
group, the regression of the dependent 
variable means on the independent vari- 
able means yields px. 

That pli- is not necessarily equivalent 
to f3yx is well-known to sociologists; the 
literature is replete with allusions to the 
danger of inferring individual-level rela- 
tionships from aggregate-level relation- 
ships. Why pli- may give a biased esti- 
mate of 3yx, however, is not as well- 
known. Indeed, a discrepancy between 
f3Y and ~,lyx may seem counterintuitive, 
since (1) this discrepancy is not due to 
sampling error (f3Y and f~yx are both 
population parameters),5 and (2) the vari- 
ables are based on data from the same 
source (i.e., X is computed from data on 
X, and Y is computed from data on Y). 

4 The question of efficiency is beyond the scope of 
this paper. The reader should not assume, however, 
that efficiency is unimportant; biased but efficient 
estimators often are preferable to unbiased but inef- 
ficient estimators. This paper specifies the condi- 
tions for unbiased estimation; future papers will want 
to attend to the issue of efficient estimation. 

5 As Cronbach (1976:1.9) noted, statistics texts 
sometimes give the misimpression that aggregation 
problems involve the issue of inference from sample 
to population. This is a dangerous misimpression; 
the reader should clearly distinguish cross-level bias, 
which involves discrepancies between population 
parameters, from biases which involve discrepancies 
between sample statistics and population parameters 
(see also Duncan et al., 1961:62). 
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The demystification of cross-level bias 
begins with the recognition that an aggre- 
gate variable often measures a different 
construct than its namesake at the indi- 
vidual level. Often the aggregate-level 
variable taps more constructs than the 
individual-level variable. College educa- 
tion is one example (Cronbach, 
1976:1.11): 

That an individual is college-educated indi- 
cates a good deal about what he would be 
inclined to purchase or what jobs he would 
be capable of holding. The aggregate college 
education in the community not only de- 
scribes an aggregate market and an aggregate 
employee pool, it says a good deal about 
what goods and services probably are well- 
supplied in the community (pediatricians? 
art movies? books? brokerage offices? etc.), 
and a good deal about the kinds of jobs of- 
fered. 

Race is another example: percent black in 
a community indicates characteristics 
which are as relevant to the nonblack 
members as to the black members-their 
SES, location (urban vs. rural, South vs. 
non-South), etc. It is this shift in con- 
structs, as one shifts levels of aggregation, 
which provides the basis for cross-level 
bias. 

When X and X measure different con- 
structs, bias is possible. Consider, for 
example, the finding that, in the 1968 
presidential election, percent black was 
related positively (r = +.55) to the Wal- 
lace vote for the Congressional districts in 
the South (Schoenberger and Segal, 1971). 
In this case, X (percent black in Congres- 
sional district) no doubt measures extra- 
racial characteristics of the Congressional 
district which affected the Wallace vote 
(proximity to Alabama, extensiveness of 
busing, etc.), thus giving rise to cross- 
level bias. 

On the other hand, consider a hypothet- 
ical situation where all blacks voted for 
candidate C, and all nonblacks voted for 
some other candidate. In this case, Byx = 
1 and, p- = 1 (where Y = percent of vote 
for candidate C, and X = percent black); 
hence, fByx = 8 -p . Even though X and X 
measure different constructs-i.e., X 
measures extraracial district charac- 
teristics-no cross-level bias results, 

since the extraracial characteristics 
measured by X have no effect on Y, with 
X controlled ("Y, with X controlled," is 
hereafter written "YX"). 

We can now state a rule for making 
downward cross-level inference in the 
bivariate case: 

Cross-level bias is absent when, and 
only when, /32 = 0 in the structural 
equation Y= a + ,BIX1 + 232XI + e (see 
Figure 1). 

This rule is useful to the researcher 
whether or not s/he can choose the 
method of grouping. When the researcher 
has no choice, the question is: is X unre- 
lated to Y*X? If the researcher can choose 
between methods of grouping, the ques- 
tion becomes: is X unrelated to Y.X under 
any of the methods of grouping? (It is im- 
portant to note that X may be related to 
Y.X under one method of grouping but 
unrelated to Y.X under another method.) 

The theoretical interpretation of the rule 
will be spelled out below. First, however, 
I give a more rigorous statistical demon- 
stration of the rule; readers who are in- 
terested only in its interpretation and ap- 
plication may wish to go directly to Sec- 
tion II. 

Bivariate Case 

Cross-level bias is the difference, in a 
population, between the aggregate-level 
regression coefficient obtained and the 
individual-level coefficient of interest. In 
the bivariate case, then, downward cross- 
level bias (8) is formally defined as fol- 
lows: 

5 = Y- pyx, (1) 

wherelB3i is the regression coefficient in 
the regression of Y on X (also called the 

No cross-level bias. Cross-level bias. 

Figure 1. Representation of the Rule for Cross- 
Level Inference: Bivariate Case. 
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between-group slope)6 and Ory is the re- 
gression coefficient in the regression of Y 
on X within groups (also called the com- 
mon7 within-group slope). (Some writers 
focus on ,Iyx instead of l8yx However, as 
we will see in Section III, jlyx reflects 
aggregate-level, as well as individual-level 
effects.) 

Next, consider the following structural 
model: 

Yij = a + ,3Xij + ,j2X + e (2) 
(i = 1,2... N; j 
= 1,2 . .. M), 

where Xi; refers to the score on X for the 
ith person in the jth group, and X; is the 
group mean of the jth group. This model 
states that Y is a linear function of X, X, 
and a random disturbance, e, where X and 
X are causal variables (in the theoretical 
section which follows, we relax the as- 
sumption that X is causal and consider the 
case where the effect of X is spurious). 
We make the usual assumptions about e: 
that it has zero mean, constant variance, 
is uncorrelated with the independent vari- 
ables, and that the values of e are mutually 
uncorrelated. Werts and Linn (1971; also 
Alwin, 1976) showed that the structural 
parameters /31 and /2 are: 

13 = 8X; (3) 
/32 = pYX- AYx (4) 

Equations (3) and (4) state that, in the 
bivariate case (i.e., in the case of a single 
X), the individual-level effect of X on Y is 
l8YX, while the aggregate-level effect of X 
on Y is 8 - R - 8yx. But 8 - - - ,]yx also 
measures downward cross-level bias. 
Hence, in the bivariate case, downward 

cross-level bias is absent when, and only 
when, X has no aggregate-level effect on 
Y. Differently stated: the aggregate-level 
coefficient (J3y) provides an unbiased es- 
timate of the individual-level effect of X 
on Y (OY) when, and only when, X has no 
effect on Y.X. 

This result also can be derived by be- 
ginning with the analysis of covariance 
equation. (Covariance analysis is intro- 
duced here since it is easier to generalize 
to the multivariate case.) The standard 
covariance equation, with a single 
covariate, is as follows (see Burke and 
Schuessler, 1974:165): 

Y= + Aj + P (Xij - X + eij (5) 
(i= 1,2, ... .N; j = 1,2, ... M), 

where g is common to all cases, Aj is 
common to all cases in the jth group, Xij is 
defined as before, X is the grand mean of 
X, and eij is specific to the ith individual in 
the jth group. The least-squares solution 
for the normal equations derived from (5), 

M 
subject to the constraint that E njAj = 0, 

i=1 

yields the following for the population 
parameters in (5): 

A = Y (the grand mean of Y); 
P = ORYX; _ _ (6) 
A; = Yj-Onyx (Xi-X)-Y. 

Noting that Yj = ay- +l8--Xj + e--, and 
substituting (6) into (5), we obtain: 

Yij = Y + {(a-R + l8ix Xj + e--) 
- yx(xj - N) - Y} 
+ f]yx(Xij - X) + eij (7) 

a-- + /3syXii + (Jl- X 
- 3yX)X + e. 

Hence, whether we begin with equation 
(2) or with the covariance equation (equa- 
tion (5)), we conclude that the effect 
(slope) of X on Y.X is - - - /8yx (equation 
(7)). 

To summarize: cross-level bias is poss- 
ible because X and X may measure differ- 
ent constructs-an obvious point, but one 
which has usually been overlooked in the 
burgeoning literature on cross-level bias. 
When X and X measure different con- 
structs, X may affect Y * X. In 
the bivariate case, an effect of X on Y.X 

6 The computation of f3-j involves weighting by 
the size of the group: 

X nj (Xj - X) (Yj - Y) 
X 

nj (X; -X)2 

where X; is the group mean of the jth group, X is the 
grand mean of X, and nj is the number of individuals 
in the jth group. 

7 Here, and throughout this paper, effects are as- 
sumed to be linear and additive. In the case of 
nonadditive relationships, 8,Q, is an inappropriate 
statistic, since each group should be examined sepa- 
rately (Slatin, 1969). 
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results in cross-level bias. We will now 
see that the same principles hold in the 
multivariate case. 

Multivariate Case 

Cross-level bias is defined as the dif- 
ference between the obtained aggregate- 
level regression coefficient(s) and the 
individual-level regression coefficient(s) 
of interest. In the bivariate case, examin- 
ing cross-level bias involves only one 
comparison: the comparison of 83 jz and 
f3Y. However, if there are n independent 
variables, n comparisons are involved. 
With two independent variables (X1 and 
X2), for example, X- X2 is compared 
with f3X1.2 and iiYX2.X1 is compared with 
/YX2.x1X 

As in the bivariate case, cross-level bias 
is absent in the multivariate case only 
when X-effects are absent. This condition 
is represented in Figure 2: X1 has no effect 
on Y.X1, . . Xn, X2, * . . X;n X2 has no 
effect on Y.X1, . . . Xn, X1, X3, Xn; etc. 
The rule for cross-level inference in the 
multivariate case is as follows: 

Cross-level bias is absent when, and 
only when, X1, . . . Xn have no inde- 
pendent effects in the structural equa- 

Xl 

X1 
e 

X2 

Xn 

Xn 

No cross-level bias. 
Figure 2. Representation of the Rule for Cross- 

Level Inference: Multivariate case. 
(Representation of Zero-Order Correla- 
tions between Exogenous Variables Omit- 
ted) 

XI1 + . + 82n -Xn + e X 

I now give a statistical demonstration of 
this rule. 

To simplify the exposition, we first con- 
sider two independent variables (X1 and 
X2); the method then easily generalizes to 
n independent variables. We begin with 
the following structural model: 

Yi; = a + kI X1U + 82 X2iJ (8) 
+ /3 X1J + 34 X2J + e, 

where the variables are defined as before 
(note that an additional subscript is re- 
quired to distinguish X1 and X2), and the 
assumptions about the error term are the 
same as in equation (2).8 The structural 
parameters for equation (8) are: 

/82 = 1 /32 = 13yx2.x1,(9 

3 YX2.X; YXx (9) 4= /3vX1.X2 -YX.-X2 

/84 = P3v Rx - 13x.1 

The parameters in (9) can be generated 
by repeating the procedure used in the 
bivariate case: (1) begin with the 
covariance equation; (2) derive the least- 
squares solution for the parameters (p, Aj, 
and /3's); (3) state Y as a function of the 
X's, and substitute the latter for Y; (4) 
rearrange the terms so that Y is given in 
terms of the X's and X's (see the appen- 
dix). 

Equation (9) shows that 8- 
gives the effect of X1 on Y.X1,X2,X2, 
and A x - gives the e1zect 
of X2 on Y*X1,X2,XI. Hence, as in the 
bivariate case, the terms attached to 
the X-variables are the cross-level bias 
terms. Cross-level bias, then, is absent 
when, and only when, X1 and X2 have no 
structural effects. 

The generalization of this result to n 

8 Note that mixed models-i.e., models where the 
X-effects involve different variables than the 
individual-level effects-are possible in the mul- 
tivariate case if we allow individual-level parameters 
to be zero. For example, if /32= f63 = 0 in equation 
(8), the model reduces to Y= a + 8f Xi + ,84 X2 + e. 
Mixed models change the cross-level bias terms; in 
the current example, the individual-level effect of 
interest is flY1j, x, not ,xl x . Except where other- 
wise noted, the daIscussion 'throughout assumes non- 
zero individual-level parameters. 
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independent variables is straightforward, 
though notationally cumbersome. We 
begin with the following structural model: 

Yij = a + 81 X1 + ...+ An Xn 
+ J3n+_ Xii + . * * (10) 
+ 2n Xnj + e, 

where the variables are defined as before, 
and the assumptions about the error term 
and measurement error are the same as in 
equation (2). The structural parameters 
for equation (10) are (see the Appendix): 

i13 = 1YXI.X2, . . .xn 

1An = I8yxn.xl,. .** - (11) 
18n+i = vyX_1x2,- -n 8yxl'x2. . . xn 

182n = fYX l.X 
x 

n,1 . . . *Xn-1 
-8yxn-xl. Xn-1' 

As before, the coefficients of the X- 
terms are the bias terms. Hence, equation 
(1) -demonstrates the rule for cross-level 
inference in the n-variable case: down- 
ward cross-level bias is absent when, and 
only when, X1, . .Xn have no structural 
effects on Y. 

II. THE X-RULE: THEORETICAL 
INTERPRETATION AND IMPLICATIONS FOR 

RESEARCH 

When deriving a general rule for cross- 
level inference, it is necessary to focus on 
the structural (i.e., "true") relationships 
between variables. But the researcher of 
course deals with observed relationships; 
these relationships may 'be' misspecified. 
Hence, in applying the X-rule, the re- 
searcher must not only determine if X- 
effects are present, but must also assess 
whether they are true effects. In this pro- 
cess, the researcher making downward 
cross-level inference is doubly handi- 
capped: not only must s/he deal with the 
issue of whether X-effects are struc- 
tural, but s/he must make this assessment 
without being able to estimate X- 
effects empirically. 

This section is intended to help the re- 

searcher in applying the X-rule in empiri- 
cal analysis. Applying the X-rule involves 
asking two questions. (1) Are X-effects 
present? (2) If X-effects are present, can 
they be eliminated by respecification of 
the (aggregate) equation? These issues 
must be determined by theory. First, then, 
I discuss the general theoretical underpin- 
nings of X-effects. 

Group Effects Theory 

Sociologists have often argued that 
groups can (and do) have effects over and 
beyond those of the attributes of the group 
members (see, for example, Durkheim, 
1897; Merton and Kitt, 1950; Blau, 1957; 
1960). Blau (1960:179) expressed this issue 
as follows: 

The individual's orientation undoubtedly 
influences his behavior; the question is 
whether the prevalence of social values in a 
community also exerts social constraints 
upon patterns of conduct that are indepen- 
dent of the influences exerted by the inter- 
nalized orientations. 

Stouffer et al. (1949), for example, found 
that inexperienced soldiers in veteran 
units were less likely to say that they were 
ready for combat than inexperienced 
soldiers in inexperienced units-an indica- 
tion of the influence of the veterans (who 
generally said they were not ready for 
combat). Sociologists also have found 
evidence of group effects in public assist- 
ance agencies (Blau, 1960), book discus- 
sion groups (Davis et al., 1961) and high 
schools (Alexander and Eckland, 1975, 
but see Hauser et al., 1976), to name a 
few. 

Some discussions give the impression 
that groups are unidimensional and that 
there is, at most, a single group effect.9 
But groups can have numerous distin- 
guishable properties even as individuals 
can have numerous distinguishable prop- 
erties. Hence I prefer to speak in terms 
of macroproperties and microproperties. 
Macroproperties can be divided into two 

9 This misimpression probably has arisen because 
the effect of the nominal-scale variable in covariance 
analysis is often called a group effect. This effect is 
probably better called the composite group effect, 
since it measures the total impact of all the group 
properties affecting Y (Firebaugh, 1977a). 
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Table 1. Three Cases Where X1 Would Be Related to Y X1 

Case Structural Equation Further Conditions. 

Case 1. Spurious Group Effect Y = a + P8 Xi +? 2X2 + e X1 correlated with X2 

Case 2. Non-Xl Group Effect Y = a + 81 X1 + pa X2 + e X1 correlated with X2 

ora Y=a + pi X1 + 2I+e X1 correlated with I 

Case 3. Emergent Xl-Effect Disputedb 

aThe symbol "I" represents an integral macroproperty. 
bSee discussion in text. 

classes, according to whether or not they 
are measured by aggregating microproper- 
ties. Macroproperties which are not mea- 
sured by aggregation-form of govern- 
ment, for example-have been called 
integral properties (Selvin and Hagstrom, 
1963). 

Recall the earlier observation that a cor- 
relation between X and Y.X is possible 
because X can measure more constructs 
than X.10 Note three possible reasons for 
a correlation between X and Y-X: (1) X 
can reflect microproperties other than X; 
(2) Xcan reflect macroproperties other 
than X; and (3) X itself can have a causal 
effect on Y. We will now see that these 
cases are central in the discussion of 
eliminating cross-level bias through re- 
specification. 

Eliminating X-Effects 

Table 1 presents the three cases where 
X would be correlated with Y.X. When 
the X-effect is due to uncontrolled 
individual-level variables (Case 1), cross- 
level bias can be avoided by respecifica- 
tion of the aggregate equation. On the 
other hand, the cross-level biases in- 
volved in Cases 2 and 3 ordinarily cannot 
be eliminated by respecification, since 
they involve causal macroproperties. We 
now examine each of these cases in more 
detail. 

Case 1. spurious group effect. As 
Hauser (1970; 1974) has argued con- 
vincingly, group effects may be merely 
individual-level effects in disguise. Spuri- 
ous X-effects occur when X is correlated 

with uncontrolled causal individual-level 
variables. Table 1 gives the prototypical 
form of this case: the causal variables, X1 
and X2, are both individual-level vari- 
ables, and X2 is correlated with X1. In this 
situation, X1 will be correlated with Y.X1 
through its correlation with X2. This prob- 
lem can be remedied by respecifying the 
aggregate equation. Observe that X1 and 
X2 have no independent effects in a re- 
gression of Y on X1, X2, X1, and X2 (note 
the structural equation in Table 1). Now 
apply the multivariate form of the X-rule: 
if X1 and X2 have no independent effects, 
then the equation Y = a + 81 X1 + 
/32 X + E provides unbiased estimates 
of the parameters of the structural equa- 
tion Y = a + f13 X1 + /32 X2 + E. 

In short, in the case of spurious group 
effects, unbiased estimates. are possible 
even when the researcher does not have 
recourse to individual-level data. How 
does one know whether group effects are 
causal or spurious? In the final analysis, 
the question of whether the effect of a 
given macroproperty is spurious-like the 
question of whether the effect of a given 
microproperty is spurious-must be re- 
solved by theory. As a general rule, causal 
group effects seem most likely in groups 
where group members interact and share 
relevant life experiences; hence, the mac- 
roproperties of "natural" groups (neigh- 
borhoods, for example) seem more likely 
to have causal effects than the macro- 
properties of arbitrarily-created regions 
(census tracts, for example). 

Case 2. non-XI group effect. In Cases 
1 and 2, X1 is correlated with Y.X1 
through its relationship with variables, 
other than X1, which cause Y. In Case 1, 
these causal variables are microprop- 
erties; in Case 2 they are macroprop- 

10 I am grateful to an ASR reviewer for suggesting 
that I link this observation more directly to group 
effects theory. 
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erties.1 Unlike Case 1, then, Case 2 in- 
volves causal group effects. The _causal 
macroproperties may be either X-prop- 
erties or integral properties. Table 1 gives 
the prototypical forms: in the first equa- 
tion for Case 2, X2 has a causal effect on 
Y; in the second equation, I (denoting an 
integral macroproperty) has a causal ef- 
fect on Y.'2 

Consider again Cronbach' s (1976) 
example of mean education of com- 
munities. To provide a focus for our con- 
sideration, suppose that we wish to study 
opera attendance (Y). Certainly education 
(X1) causally affects opera attendance. 
Other microproperties, such as income, 
probably also affect opera attendance; 
let's denote these variables X2, . . . Xn. 
But community macroproperties also 
could affect opera attendance; for exam- 
ple, community facilities for opera per- 
formances (I) likely affects Y. If mean 
community education (Xl), or any other 
community mean X2 to Xn, is correlated 
with I, the aggregate equation Y = a + Al1 
X1 + . . . + fn Xn + E will give biased 
estimates of the individual-level effects. 

At first blush, the solution to this prob- 
lem seems straightforward: control the 
causal macroproperties. However, this 
approach does not necessarily work. Con- 
sider the simplest case: two causal vari- 
ables, X1 and X2 (Table 1). Since X1 has 
no independent effect on Y-X1X2,X2, we 
know that ,fi in the equation Y = a + /81 
X1 + 182 X2 + E is an unbiased estimate of 
3YXI X2 (see equation (9), above). However, 

.x is not the parameter ot interest; we 
want the effect of X1 on Y.X2, not the 
effect of X1 on Y.X2. Unless the effect of 
X1 on Y.X2 is equivalent to the effect of X1 
on Y.X2, then, the regression of Y on X1 

and X2 will give a biased estimate of the 
effect of X1. 

Case 3. emergent Xl-effect. Consider 
the following question: since X is a sum of 
X, how can X be related to Y once X is 
controlled? We have already examined 
two possibilities. X could be related to 
uncontrolled causal microproperties or it 
could be related to causal macroproper- 
ties. Now we consider a third possibility: 
that X itself could give rise to properties 
which causally affect Y*X. That is, Case 
3-unlike Cases 1 and 2-involves emer- 
gent properties implicit in the aggregation 
of X. 

I am referring in particular to emergent 
group "atmospheres"; effects of such at- 
mospheres are variously termed "contex- 
tual" (Farkas, 1974), "structural" (Blau, 
1960), or "compositional" (Davis et al., 
1961; Werts and Linn, 1971). We can illus- 
trate such effects with an example from 
Boudon (1963): assume X= income and 
Y= voting behavior (conservatism). 
Boudon suggested that, in France, the 
mean income of a neighborhood has a pos- 
itive effect on conservatism, net of indi- 
vidual income. A person living in a high- 
income neighborhood, then, is expected 
to be more conservative politically than a 
person with the same income living in a 
low-income neighborhood. In such a case, 
X (mean neighborhood income) would be 
related to Y.X. 

Social scientists dispute whether X 
should be considered the structural (i.e., 
true) variable in such a case.'3 This dis- 
pute turns on the question of whether the 
emergent property generated by X should 
be viewed as a separate variable or as an 
inherent part of X (Cronbach, 1976:1.27: 
"The properties of what the physicists call 
a critical mass arise from the aggregate 
itself, not some 'additional variable'. The 
whole in this case is more than the sum of 
the parts"). 

Consider again the effect of mean 
neighborhood income on political conser- 
vatism. How could such an effect come 
about? The implicit argument apparently 

Xl Davis (1966) discussed an effect which is dif- 
ficult to classify either as micro or macro. This is the 
"frog pond" effect. In the frog pond effect, group 
members use some group property as a point of 
comparison; the individual's position relative to that 
group standard then affects Y. When frog pond ef- 
fects involve X, X will be related to Y-X (Firebaugh, 
1977b). 

12 In the case where more than one macropLoperty 
causally affects Y, the correlation between X1 and 
Y-X, is determined by the correlation of Xl with the 
composite effect of the macroproperties (Werts and 
Linn, 1971; Firebaugh, 1977a). 

1' Indeed, some social scientists question the 
possibility of emergent properties. I do not care to 
enter this debate here; the interested reader should 
consult Hannan (1971a:Chap. 1). 
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is that a person is influenced by those with 
whom s/he interacts, and that people in 
affluent neighborhoods are more likely 
than those in poor neighborhoods to inter- 
act with conservatives. 14 Hence one might 
be tempted to say that the causal macro- 
property is the neighborhood's level of 
conservatism, not its level of income; that 
is, one would propose that the following 
equation is the structural equation: Y= a 
+ f1 X + 32 Y + E. But, under this spec- 
ification, the mean conservatism of a 
neighborhood is caused by the mean in- 
come of the neighborhood (this easily can 
be shown by taking the within-group ex- 
pected value of Y in the equation just gi- 
ven). Which is the structural variable, 
then, mean income or mean conser- 
vatism? 

I am inclined to view mean income as 
the structural variable; others may dis- 
agree. But this is a moot point relative to 
cross-level bias: whether Y is caused by X 
and X, or caused by X and Y, the 
aggregate-level equations (Y = a + _I1 X 
+182X + Eand Y = a +,I3X + 82Y +'E, 

respectively) obviously cannot be esti- 
mated. In short, in the case of emergent 
X-effects, individual-level data are re- 
quired for unbiased estimation. 

This section concludes the exegesis of 
the X-rule. I will use Robinson's (1950) 
classic example of the relationship be- 
tween race and illiteracy to illustrate the 
major principles set forth by the rule. 
First, however, I address a final issue: 
why I have chosen to focus on the 
within-group slope (OY) instead of the 
total individual-level slope (3yx). 

III. FOCUSING ON oryx 

The focus of this paper differs from the 
focus of prior discussions of cross-level 
bias. In discussing the effect of X on Y at 
the individual level, prior discussions in 

sociology typically have focused on the 
following equation: 

Yjj = a + 3yx X ?j + e. (12) 

However, the individual-level effect of X 
on Y is represented by fh,8 not 3yx; fRyx is 
a combination of individual-level and 
aggregate-level effects of X (Duncan et 
al., 1961:66): 

ORYX = f yx + EXA (JiYR - Y) (13) 

where EXA is the correlation between X 
and A (the grouping variable). Therefore, 
the researcher should be interested in es- 
timating 18, not 3yx (Cronbach, 1976). 

In discussing the rule for cross-level in- 
ference, I have found it convenient to 
refer to the difference between f3-- and 
1ByX as cross-level bias. Many discussions, 
however, split this difference into two 
parts (OR-Y- - fyx and f8yx - 3yx) and focus 
on the former. Following Hannan and 
Burstein (1974:387), I will call ,8- - ORyx 
"aggregation bias." 

From equation (13) one can derive the 
relationship between cross-level bias (8) 
and aggregation bias (0): 

(14) 
0/8 + EXA = 1, EXA 0 0 or 1, 8 i 0. 

From this identity note, first, that cross- 
level bias is zero when, and only when, 
aggregation bias is zero, since 0 = 
(l-EXA) 8, and O<EXA <1 (cross-level 
bias is indeterminate when EXA = 0 or 1). 
Hence, in the bivariate case, rules for 
avoiding cross-level bias apply to aggrega- 
tion bias, and conversely. Second, note 
that aggregation bias is always less than 
cross-level bias. Third, the size of aggre- 
gation bias relative to cross-level bias is a 
function of the correlation between the 
independent variable and the grouping 
variable: as EXA increases, the proportion 
of cross-level bias that is aggregation bias 
decreases. 

An examination of the empirical exam- 
ple given by Hannan and Burstein 
(1974:Table 2) illustrates these points. 
Hannan and Burstein used data for 2,676 
incoming university freshmen to assess 
the likely consequences of grouping under 
various types of grouping variables. Their 
purpose was too identify those grouping 
variables which result in the least aggrega- 

14 There is another possibility: perhaps conserva- 
tives select housing in wealthier neighborhoods (and 
liberals select housing in poorer neighborhoods) than 
expected on the basis of their income. This is an 
example of what has been termed "grouping by Y" 
(Blalock, 1964) or "selection by the dependent vari- 
able" (Hammond, 1973). The case of selection by the 
dependent variable, like the case of emergent X- 
effects, results in cross-level bias. 
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Table 2. Aggregation Bias and Cross-Level Bias under Four Grouping Variables a 

Aggregation Cross-level 
Grouping Variable (A) E2XA Bias (0)b Bias (8) 0/d 

S.A.T. .98 -.001 -.037 .02 
Father's education .03 .039 .040 .97 
Self-opinion of academic abilities .28 .060 .084 .72 
Achievement test score .70 .329 1.080 .30 

aSee Hannan and Burstein (1974) for a more complete discussion of these data. 
Variables were standardized before grouping; hence these numbers differ from those reported 

in Hannan and Burstein's Table 2. 

tion bias, and those which result in the 
most; as expected, they found that group- 
ing by the independent variable (aptitude 
score on S.A.T. test) was the best 
method, while grouping by the dependent 
variable (score on an achievement test) 
was the worst. 

By contrast, our purpose is to compare 
aggregation bias and cross-level bias. 
Table 2 compares aggregation bias and 
cross-level bias for four of Hannan and 
Burstein's grouping variables.15 These 
variables were chosen since they cover 
the range of values for EXA, from a very 
large correlation (grouping by S.A.T.) to a 
very small correlation (grouping by 
father's education). As expected, aggrega- 
tion bias is less than cross-level bias. 
Further, 0/8 is inversely related to EXA, as 
expected. A comparison of the two ex- 
tremes on 0/5-S.A.T. and father's 
education-underscores the differences in 
focusing on aggregation bias instead of 
cross-level bias: while aggregation bias is 
quite different under the two methods of 
grouping, cross-level bias is about the 
same. 

IV. ILLUSTRATION: ROBINSON REVISITED 

An empirical illustration should crystal- 
lize the ideas presented in this paper. A 

reanalysis of Robinson's (1950) classic 
illustration of the relationship between 
race and illiteracy seems fitting, since 
Robinson's paper is the seminal paper for 
discussions of cross-level bias in sociol- 
ogy. Using 1930 U.S. census data, Robin- 
son computed the correlation between 
race (black/nonblack) at the individual 
level and at the regional level. The corre- 
lations were .20 and .95, respectively- 
graphic confirmation of Robinson's con- 
tention that aggregate data misestimate 
individual-level correlations. 

Tables 3 and 4 present the data for 
Robinson's computations. These data are 
of course nominal scale, but we can still 
use them to illustrate the principles set 
forth in this paper. Unlike Robinson, who 
used measures of correlation, we employ 
regression coefficients. We first compute 
I3yx. According to these data (Table 3), 
16.3% of blacks and 3. 1% of the remainder 
of the population were illiterate in 1930. 
Letting I=probability of being illiterate, 
and letting R be a dummy variable for race 
(1 if black, 0 otherwise), we can write this 
individual-level relationship between race 
and illiteracy as follows: 

I=.031+.132R. (15) 

This equation states that the probability of 
being illiterate is .163 (=.031+[.132] [1]) 
for a black, and .031 (=.031+[.132] [0]) for 
a nonblack. The coefficient for R is analo.- 
gous to a regression coefficient; indeed, 

15 Professor Leigh Burstein generously supplied 
the information needed to construct Table 2. 

Table 3. Race and Illiteracy (000's, Population Ten Years and Older): 1930 U.S.' 

Black Nonblack Total 

N % N % N % 

Illiterate 1,514 16.3 2,770 3.1 4,284 4.3 
Literate, 7,779 83.7 86,661 96.9 94,440 95.7 

^ Source: U.S. Census, 1930. 
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Table 4. Percent Black and Percent Illiterate, by 
Nine Regions: 1930 U.S." 

Region Blackb Illiterateb 

1. NewEngland 1.1 3.7 
2. Middle Atlantic 4.0 3.5 
3. EastNorthCentral 3.7 2.1 
4. West North Central 2.6 1.4 
5. South Atlantic 27.6 8.3 
6. East South Central 27.2 9.6 
7. West South Central 18.8 7.2 
8. Mountain .9 4.2 
9. Pacific 1.1 2.1 

a Source: U.S. Census, 1930. 
b Population ten years and older. 

regressing I (as a dummy variable: 1 if 
illiterate, 0 otherwise) on R yields AIR 

=.132. 
Next we compute ,3 jx. Following 

Robinson, we group by region. To obtain 
t3 y x, however, we note that the 
important regional classification is 
South/non-South (see Table 4; by 
"South" I mean regions 5-7). Table 5 
presents the aggregate data for race and 
illiteracy, grouped by region (South/non- 
South). From Table 5 we can compute the 
aggregate-level equation analogous to 
equation (15): 

I =.019+.26R, (16) 

where I = proportion illiterate and R = 
proportion black. Hence, the relationship 
between proportion black and proportion 
illiterate by region overstates the zero- 
order individual-level relationship be- 
tween race and illiteracy by .128 (= .26 - 
.132). 

From the finding that 8x;j 4 /yx we can 
make two inferences. First, we can infer 
that percent black by regions has an X- 
effect on illiteracy. This X-effect is no 
doubt indirect; percent black of a region is 
probably correlated with more direct 

Table 5. Percent Black and Percent Illiterate, 
South/Non-South: 1930 U.S." 

Percent Percent 
Region Blackb Illiterateb 

South 24.7 8.3 
Non-South 3.0 2.7 

"Source: U.S. Census, 1930. 
Population ten years and older. 

causes of illiteracy, such as inferior 
schools. Second, we can infer that the 
zero-order individual-level relationship 
between race and illiteracy is not the rela- 
tionship of interest; i.e., 3yx, like pi, 
misestimates the individual-level effect of 
race on illiteracy. 

A complete specification of the 
individual-level and aggregate-level de- 
terminants of illiteracy in the U.S. in 1930 
is beyond the scope of this paper (but see 
Hanushek et al., 1974). Nevertheless, the 
finding that percent black by region has an 
effect on illiteracy suggests the examina- 
tion of race and illiteracy, with region con- 
trolled (Alker, 1969: 84-5, also suggests 
this control). Table 6 presents these data; 
19.7% of blacks living in the South in 1930 
were illiterate, while only 4.6% of blacks 
living outside the South were illiterate. 
This suggests that region, not race, was 
the major determinant of illiteracy. How- 
ever, illiteracy among nonblacks differed 
by only 2% between regions (Table 6). 
Apparently, neither being black, nor living 
in the South, in itself significantly raised 
the probability of being illiterate. How- 
ever, being black in the South did. We can 
see this interaction effect very clearly by 
translating the above percentages into an 
equation for illiteracy: 

I = .026 + .020R + .020S + .131 
(R*S), (17) 

where I and R are defined as in equation 
(15), S is a dummy variable for region (1 
for South, 0 otherwise), and R*S is a 
dummy variable for the interaction be- 
tween race and region (1 for blacks living 
in the South, 0 otherwise). The effect of 
being a black in the South is striking: it 
raises the probability of being illiterate by 
.131, net of the additive effects of race and 
region. Without further data, the interpre- 
tation of this interaction effect is ambigu- 
ous (discrimination? school segregation? 
etc.). Note, however, that controlling this 
interaction reduces the independent effect 
of race to .02; i.e., net of region and the 
region/race interaction, being black raises 
the probability of being illiterate by only 
.02. In this analysis, in sum, the net 
individual-level effect of race on illiteracy 
is .02; the zero-order individual-level rela- 
tionship between race and illiteracy is 
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Table 6. Race and Illiteracy, South/Non-South (000's, Population Ten Years and Older): 1930 U.S.' 

South 

Black Nonblack Total 

N % N % N % 

Illiterate 1,416 19.7 1,001 4.6 2,417 8.3 
Literate 5,779 80.3 20,972 95.4 26,751 91.7 

Non-South 

Illiterate 96 4.6 1,771 2.6 1,867 2.7 
Literate 2,003 95.4 65,685 97.4 67,688 97.3 

aSource: U.S. Census, 1930. 

.132; and the aggregate-level relationship 
between race and illiteracy is .26. As ex- 
pected, then, 3yx misestimates the net 
individual-level effect of X on Y when - - 
misestimates f8yx. 

V. IMPLICATIONS AND CONCLUSION 

Implications 

The major conclusion of this paper is 
that downward cross-level inference can 
be made without bias when, and only 
when, X-effects are absent. This conclu- 
sion has different implications for upward 
cross-level inference than it does for 
downward cross-level inference. We now 
consider its implications for upward 
cross-level inference; i.e., for the case 
where the researcher makes inferences 
about aggregate-level effects from 
individual-level data. 

The conclusions for downward cross- 
level inference do not apply in a 
straightforward way to upward cross-level 
inference. Consider the bivariate case, for 
example. In downward inference, at issue 
is the use of an obtained coefficient (J3:VR) 
to estimate the coefficient of interest at a 
lower level of aggregation (J3x); in upward 
inference, at issue is the use of an ob- 
tained coefficient (J3x) to estimate the 
coefficient of interest at a higher level of 
aggregation (J--.x). (The coefficient of 
interest at the aggregate level is f3- R.x, not 

x since the latter is a function of 
individual-level as well as aggregate-level 
effects.) Upward cross-level inference can 
be made with impunity, then, only when 
Byx = --x.x (note that, since f-3-.x = 
BYR.X, f-YR.x = -Y-X- j8X; see equations 
(2) and (4), above). That the rules for 

downward and upward cross-level infer- 
ence are not equivalent can be seen as fol- 
lows: if,8- = thenp,8- = px = Iyx 
(this is easily seen by examining the form- 
ulas for these 3's); if f3YX f ,,x = Oyx, 
then Pyx i fry Rx (=,f - - f,3x), except in 
the uninteresting case that f3;Y = ly= 
I8Yx = 0. In short, it is not true, in general, 
that upward cross-level inference yields 
unbiased estimates when downward 
cross-level inference does (or conversely). 

A separate discussion of the conditions 
under which individual-level data provide 
unbiased estimates of aggregate-level ef- 
fects would have little utility, since the 
researcher with individual-level data can 
estimate directly the individual-level and 
aggregate-level effects of X on Y (assum- 
ing, of course, that the researcher can 
group the data as desired: for example, 
computing X for nations requires knowing 
the nationality of the individuals). The re- 
searcher with individual-level data, then, 
most often can include both X and X in 
the equation; through such a multilevel 
analysis the individual-level and 
aggregate-level effects of X can be sepa- 
rated (Alwin, 1976; Cronbach, 1976). 

The researcher with purely aggregate- 
level data has fewer options. As we have 
seen, if X-effects are present, aggregate- 
level regression coefficients give biased 
estimates of individual-level X-effects. 
Hence, the researcher who desires to ob- 
tain unbiased estimates of individual-level 
effects from aggregate data must respecify 
the equation so that X-effects are elimi- 
nated. This is possible if the X-effects are 
not structural. Hence, if true group effects 
are so rare or so small that they almost 
always can be ignored (see Hauser, 1970; 
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1974), then Hanushek et al. (1974) are cor- 
rect in their insistence that the researcher 
restricted to aggregate data should worry 
primarily about proper specification; the 
ecological fallacy is itself a near fallacy. If, 
on the other hand, group effects cannot be 
dismissed (see Barton, 1970; Farkas, 
1974), unbiased estimates of individual- 
level relationships often will be unobtain- 
able from aggregate data; in such cases, 
unbiased estimates can be obtained only 
from multilevel analysis.16 

Summary and Conclusion 

This paper has been directed to the 
sociologist who faces the question of using 
aggregate-level data to infer individual- 
level relationships. In this situation, the 
crucial question is the following: are the 
means of the independent variables re- 
lated to the dependent variable, net of the 
effects of independent variables? I do not 
wish to claim too much for my X-rule; 
certainly this paper does not solve all the 
issues in aggregation. Nevertheless, this 
approach has advantages. First, it links 
aggregation problems to group effects 
theory. This not only provides possible 
theoretical leverage to the researcher 
puzzling over the legitimacy of downward 
cross-level inference in a particular case, 
but it also may demystify the ecological 
fallacy for some sociologists. Second, the 
X -rule is easily generalizable to the 
n-variable case. Finally, this approach fo- 
cuses explicitly on the difference between 
the aggregate-level coefficient and the 
individual-level coefficient of interest, 
Pnyx. 

In conclusion, this paper has dealt with 
cross-level bias by introducing a general 
rule for making downward cross-level in- 
ference. Of course, the researcher con- 
cerned about cross-level bias most often 
does not have individual-level data and 
thus cannot determine, empirically, 

whether the data conform to the rule. This 
is a problem with downward cross-level 
inference, to be sure; however, it does not 
differ in principle from the specification 
problem faced in all causal analyses. In 
regression analysis the researcher always 
makes assumptions about the data used. 
The validity of these assumptions most 
often is determined on theoretical 
grounds; rarely can all the assumptions be 
tested empirically. This paper suggests 
that, in an analysis which uses aggregate 
data to study individual-level relation- 
ships, an additional assumption is needed: 
that there are no X-effects. When this as- 
sumption is met, aggregate data can pro- 
vide unbiased estimates of individual-level 
effects. 

APPENDIX 

Derivation of Equation (9) 

The standard covariance equation, with two 
covariates, is as follows: 

Yij + A3 + f,3 (X1i3 - X1) 
+ f2(X2iJ - X2) + eij, (1A) 

where the variables are defined as before. The least- 
squares solution for the normal equations derived 

M 

from (1A), subject to the constraint that X njAj= 0, 
yields the following for the population parameters in 
(1A): 

j3 = 
Y 

PI = 
PYXIIX29 

P2 = PYx2.x' _ = (2A) 

Aj = Yj - 1I (X1j - X1) 

- 2 (X2J - X2) - Y. 

where YX1x2and yx2.x, are the within-group regres- 
sion coefficients for X1 and X2, respectively; these 
coefficients give the individual-level effect of X1 and 
X2 on Y. Noting that Yj = a- - + f3xi x2XJ + 

13yx2-x1 X2j + e~12, and substituting (2A) into 
(lA), we obtain: 

= Y + f(a-- + P1--X2 X1X 

+ 13P j X2J + e -) 
YX2x 1 1,2 

- 1i (Xj- X1) 

- 12 (X2J- X2) - Y} 

+ 1i (Xi3 - X1) (3A) 

+ 12 (X2i - X2) + eij 

= a-Y-2 + 1I X1iJ + f2X2iJ 

+ - 13) X1, + YX-I' 2)Xl+ 

+ P/ -2-1-2)X2J + e- 

16 Fortunately, multilevel analysis does not re- 
quire individual-level data for all groups. If 
individual-level data are available for randomly 
selected groups, estimates can be obtained for ily 
and yx.x. Indeed, such a strategy often may be 
necessary since, in many cases, collecting 
individual-level data for all groups is prohibitively 
costly. 
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Derivation of Equation (11) 

The demonstration of (11) is a straightforward ex- 
tension of the previous case; I indicate here only the 
key equations. Beginning with the covariance equa- 
tion with n covariates, we find that the least-squares 
solution for Aj is: 

Aj = YJ - X * (X13 -X1)- * * 
(4A) 

YXn -x xn1(X - Xn) Y 

Noting that Y3 = a-n1 + Pi i - X2,.. X 

+ . . . + 8 y~n- Xnxnj 

Y X1, n' 

and substituting (4A) into the covariance equation 
for n covariates, we obtain: 

YUj Y + {(a- - x n+ Y 1,***XI J 

+ + nYx l...x~Xj + e--x ..n 
Y~~=Y+{(a Y X- XI Xn- fYx,. ~XI,.. 

- YXp2, . (X1j - X1) 

- * * * - _ ~ yxn xl, . (Xnj Xn) - Y} 

+ I3YX* X2 xn(X1j - X1) (5A) 

+ * . + yxnxl_. xn(Xnij -Xn) + ejj 

= a-- + yxl .X Xij. 

+ . . *+yxn xl, xn-lXnij 

(3Y XI X2' ... Xn GYXI-X2, . d . .Xn 
+ (/3yi1.i2 - - 

Y Xn X1' Xn-I 

-yx xn__)Xnj + e. 
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Answers to 20 Questions
About Interrater Reliability
and Interrater Agreement
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The use of interrater reliability (IRR) and interrater agreement (IRA) indices has increased

dramatically during the past 20 years. This popularity is, at least in part, because of the

increased role of multilevel modeling techniques (e.g., hierarchical linear modeling and mul-

tilevel structural equation modeling) in organizational research. IRR and IRA indices are

often used to justify aggregating lower-level data used in composition models. The purpose

of the current article is to expose researchers to the various issues surrounding the use of IRR

and IRA indices often used in conjunction with multilevel models. To achieve this goal, the

authors adopt a question-and-answer format and provide a tutorial in the appendices illustrat-

ing how these indices may be computed using the SPSS software.

Keywords: interrater agreement; interrater reliability; aggregation; multilevel modeling

As the use of multilevel modeling techniques has increased in the organizational

sciences, the uses (and the potential for misuses) of interrater reliability (IRR) and

interrater agreement (IRA) indices (often used in conjunction with multilevel modeling)

have also increased. The current article seeks to provide answers to common questions

pertaining to the use and application of IRR and IRA indices. Our hope is that this discus-

sion will serve as a guide for researchers new to these indices and will help expand

research possibilities to those already using these indices in their work.

Our article has three main objectives. First, we synthesize and integrate various defini-

tional issues concerning the concepts of IRR and IRA and the indices most commonly used

to assess these concepts. In doing so, we both recapitulate previous work and offer our own

extensions and interpretations of this work. Second, we recognize that a number of provo-

cative questions exist about the concepts of IRR and IRA and the primary indices used to

assess these concepts. This is especially true of researchers being exposed to multilevel

modeling for the first time. Thus, we also provide answers to some of the more common

questions associated with using these indices when testing multilevel models. Some of

these questions have been previously addressed, whereas some have not. The purpose of
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the article is to draw together, in a single resource, answers to a number of common ques-

tions pertaining to the use of IRR and IRA indices. Finally, we demonstrate the principles

discussed in our answers via empirical tutorials contained in an appendix. The purpose of

the last objective is to provide new researchers with concrete examples that will enable

them to integrate their conceptual grasp of IRR and IRA with the technical skills necessary

to answer their research questions (i.e., guidance using SPSS software). All of the data

analyzed in the current article are presented in the appendix and are also available from

either of the authors.

Definitional Questions About IRR and IRA

What is meant by IRR and IRA, and how are these concepts similar to and different

from one another? How are IRR and IRA related to discussions of multilevel modeling?

Such questions are often asked by researchers, both faculty and students, who are under-

taking their first multilevel project. How one goes about answering these questions has

a profound impact on (a) the approach one takes when estimating IRR and IRA, (b) the

conclusions one will draw about IRR and IRA, and (c) the appropriateness of conducting

a multilevel analysis. Thus, we address these definitional questions below. Throughout

our article, we use the following notation:

X = an observed score, typically measured on an interval scale of measurement,

S2
X = the observed variance on X,

J = the number of items ranging from j= 1 to J,

K = the number of raters or judges ranging from k= 1 to K, and

N = the number of targets ranging from i= 1 to N.

Question 1: What is meant by IRR and IRA, and how are these concepts similar to and differ-

ent from one another?

IRR refers to the relative consistency in ratings provided by multiple judges of multiple

targets (Bliese, 2000; Kozlowski & Hattrup, 1992; LeBreton, Burgess, Kaiser, Atchley, &

James, 2003). Estimates of IRR are used to address whether judges rank order targets in a

manner that is relatively consistent with other judges. The concern here is not with the

equivalence of scores but rather with the equivalence of relative rankings. In contrast,

IRA refers to the absolute consensus in scores furnished by multiple judges for one or

more targets (Bliese, 2000; James, Demaree, & Wolf, 1993; Kozlowski & Hattrup, 1992;

LeBreton et al., 2003). Estimates of IRA are used to address whether scores furnished by

judges are interchangeable or equivalent in terms of their absolute value.

The concepts of IRR and IRA both address questions concerning whether or not ratings

furnished by one judge are ‘‘similar’’ to ratings furnished by one or more other judges

(LeBreton et al., 2003). These concepts simply differ in how they go about defining inter-

rater similarity. Agreement emphasizes the interchangeability or the absolute consensus

between judges and is typically indexed via some estimate of within-group rating disper-

sion. Reliability emphasizes the relative consistency or the rank order similarity between

judges and is typically indexed via some form of a correlation coefficient. Both IRR and
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IRA are perfectly reasonable approaches to estimating rater similarity; however, they are

designed to answer different research questions. Consequently, researchers need to make

sure their estimates match their research questions.

Question 2: How are IRR and IRA related to discussions of multilevel modeling?

The basic idea underlying multilevel modeling is that there are variables measured

at different levels of analysis (e.g., individuals, work groups, work divisions, different

organizations) that affect dependent variables, typically measured at the lowest level of

analysis (e.g., individuals). In some instances, the higher-level variables are actually mea-

sured at a higher level of analysis (e.g., organizational net profits). However, in other

instances, higher-level variables are composites of lower-level variables (e.g., aggregated

individual-level measures of affect used to measure group affective tone; George, 1990).

Depending on the theoretical nature of the aggregated construct, it may (or may not)

be necessary to demonstrate that the data collected at a lower level of analysis (e.g.,

individual-level climate perceptions) are similar enough to one another prior to aggregat-

ing those data as an indicator of a higher-level construct (e.g., shared climate perceptions

within work teams). For example, Kozlowski and Klein (2000) discussed two approaches

to bottom-up processing (where individual- or lower-level data are combined to reflect a

higher-level variable): composition and compilation approaches. Chan (1998) and Bliese

(2000) reviewed various composition and compilation models and concluded that IRA

and IRR are important when using composition models but less so for compilation

models.

Compilation processes rest on the assumption that there are apparent differences

between aggregated and nonaggregated data. Therefore, it is not necessary that individual-

or lower-level data demonstrate consensus prior to aggregation. For example, additive

models rely on a simple linear combination of lower-level data and do not require the

demonstration of within-group agreement (Chan, 1998). In contrast, composition processes

are often based on the assumption that individual- or lower-level data are essentially

equivalent with the higher-level construct. Therefore, to justify aggregating lower-level

data to approximate a higher-level construct, it is necessary to demonstrate that the lower-

level data are in agreement with one another (e.g., individuals within a work group have

highly similar or interchangeable levels of affect that are different from individuals’ affect

levels in another work group, and, thus, each work group has a unique affective tone).

Because such composition models focus on the interchangeability (i.e., equivalence) of

lower-level data, estimates of IRA are often used to index the extent of agreement, or lack

thereof, among lower-level observations. The equivalence of lower-level data may be

demonstrated via estimates of IRA or IRR + IRA. When only a single target is assessed,

the empirical support needed to justify aggregation may be acquired via IRA indices such

as rWG (e.g., direct consensus models and referent-shift consensus models; Chan, 1998).

When multiple targets are assessed, the empirical support needed to justify aggregation

may be acquired via IRA indices such as rWG and via IRR + IRA indices such as intra-

class correlation coefficients (ICCs). In sum, when lower-level data are aggregated to form

a higher-level variable, estimates of IRA or IRR + IRA are often invoked to aid in justify-

ing this aggregation.
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Question 3: Okay, so how do I figure out which form of interrater similarity is relevant to my

research question?

The form of interrater similarity used to justify aggregation in multilevel modeling

should depend mainly on one’s research question and the type of data that one has col-

lected. Estimates of IRA tend to be more versatile because they can be used with one or

more targets, whereas estimates of IRR or IRR + IRA necessitate having multiple targets

(e.g., organizations). However, it should be mentioned that because our discussion pertains

to multilevel modeling and the need to provide sufficient justification for aggregation, esti-

mates of both IRA and IRR + IRA are typically used. This is because justification of

aggregating lower-level data is predicated on the consensus (i.e., interchangeability) among

judges furnishing scores on these lower-level data, and estimates of IRR only measure con-

sistency. Consequently, pure measures of IRR are rarely used in multilevel modeling

because justification of aggregation is typically not predicated on the relative consistency

of judges’ ratings irrespective of their absolute value. The remainder of our article

addresses questions primarily associated with estimating IRA or IRR + IRA.

Question 4: What are the most commonly used techniques for estimating IRA, IRR, and

IRR + IRA?

Measures of IRA

rWG indices. Table 1 summarizes the most commonly used indices of IRA, IRR, and IRR

+ IRA. Arguably, the most popular estimates of IRA have been James, Demaree, and

Wolf’s (1984, 1993) single-item rWG and multi-item rWGðJÞ indices. The articles introdu-

cing these indices have been cited more than 700 times in fields ranging from strategic

management to nursing. When multiple judges rate a single target on a single variable

using an interval scale of measurement, IRA may be assessed using the rWG index, which

defines agreement in terms of the proportional reduction in error variance,

rWG = 1− S2
X

s2
E

, ð1Þ

where S2
X is the observed variance on the variable X (e.g., leader trust and support) taken

over K different judges or raters and s2
E is the variance expected when there is a complete

lack of agreement among the judges. This is the variance obtained from a theoretical null

distribution representing a complete lack of agreement among judges. As discussed under

Questions 9 and 10, determining the shape of this distribution is one of the factors that

most complicates the use of rWG. Basically, it is the variance one would expect if all of

the judges responded randomly when evaluating the target. Thus, it is both a theoretical

(i.e., it is not empirically determined) and conditional (i.e., assumes random responding)

distribution.

The use of rWG is predicated on the assumption that each target has a single true score

on the construct being assessed (e.g., leader trust and support). Consequently, any var-

iance in judges’ ratings is assumed to be error variance. Thus, it is possible to index
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agreement among judges by comparing the observed variance to the variance expected

when judges respond randomly. Basically, when all judges are in perfect agreement, they

assign the same rating to the target, the observed variance among judges is 0, and

rWG = 1:0. In contrast, when judges are in total lack of agreement, the observed variance

will asymptotically approach the error variance obtained from the theoretical null distribu-

tion as the number of judges increases. This leads rWG to approach 0.0.

Such lack of agreement has typically assumed to be generated by a uniform (i.e., equal

probability or rectangular) distribution (LeBreton et al., 2003; Schriesheim et al., 2001);

however, James et al. (1984) encouraged researchers to also model other distributions,

such as those that would be caused by response biases (e.g., leniency bias, central ten-

dency bias). Issues pertaining to choosing null distributions will be discussed in greater

detail under Question 10. Returning to Equation 1, S2
X=s

2
E represents the proportion of

observed variance that is error variance caused by random responding. Consequently, rWG

may be interpreted as the proportional reduction in error variance.

This index has been extended to situations where a single target is rated by multiple raters

on j= 1 to J essentially parallel items. The multi-item rWGðJÞ index is estimated by

rWGðJÞ=
J 1− S

2
Xj

s2
E

� �

J 1− S
2
Xj

s2
E

� �
+ S

2
Xj

s2
E

� � , ð2Þ

where S
2

Xj
is the mean of the observed variances for J essentially parallel items and

s2
E has the same meaning as above. Within the context of multilevel modeling, the rWG

and rWGðJÞ indices have been used by researchers to justify aggregating lower-level data

Table 1

Indices Used to Estimate Interrater Agreement (IRA),

Interrater Reliability (IRR), and IRR+ IRA

Form of Similarity Index Primary References

IRA rWG, rWG(J) James, Demaree, and Wolf (1984)

James, Demaree, and Wolf (1993)

r∗WG, r∗WG(J) Lindell, Brandt, and Whitney (1999)

Lindell and Brandt (1999)

Lindell (2001)

rWGp, rWGp(J) LeBreton, James, and Lindell (2005)

Current article (Question 7)

SDX, SEM Schmidt and Hunter (1989)

ADM, ADM(J), ADMd, ADMd(J) Burke, Finkelstein, and Dusig (1999)

Burke and Dunlap (2002)

aWG, aWG(J) Brown and Hauenstein (2005)

IRR Pearson correlation Kozlowski and Hattrup (1992)

Schmidt, Viswesvaran, and Ones (2000)

IRR+ IRA ICC(1), ICC(K), ICC(A,1), ICC(A,K) McGraw and Wong (1996)
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(e.g., individual affect) to represent a higher-level construct (e.g., group affective tone;

George, 1990).

Standard deviation. Schmidt and Hunter (1989) critiqued the rWG and rWGðJÞ indices,

largely based on semantic confusion arising from earlier writers’ labels of the rWG indices

as reliability coefficients (James et al., 1984) versus agreement coefficients (James et al.,

1993; Kozlowski & Hattrup, 1992). Their primary concern with rWG was that it was not

conceptually anchored in classical reliability theory. Although this was an accurate state-

ment, it is not necessarily a limitation of the rWG indices because they are not reliability

coefficients. In any event, Schmidt and Hunter recommended that when researchers

seek to assess agreement among judges on a single target, researchers should estimate the

standard deviation of ratings and the standard error of the mean rating,

SDX =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK
k= 1

Xk −X
� �2

K− 1

vuut ð3Þ

SEM = SDXffiffiffiffi
K
p , ð4Þ

where k= 1 to K judges, Xk is the kth judge’s rating on X, and X is the mean rating on X

taken over the K judges. These authors advocated using SDX to index agreement and

using the SEM to construct 95% confidence intervals around the mean rating to assess the

amount of error in the judges’ mean rating. Kozlowski and Hattrup (1992) rejected this

approach to estimating agreement because the SEM is heavily dependent on the number

of judges and because the Schmidt and Hunter approach failed to account for the level of

agreement that could occur by chance.

We concur with other researchers that the sensitivity of the SEM to sample size limits is

usefulness as a measure of rating consensus (Lindell & Brandt, 2000; Schneider, Salvag-

gio, & Subirats, 2002). We also concur with these researchers that the SDX is most appro-

priately conceptualized as a measure of interrater dispersion or disagreement (see also

Roberson, Sturman, & Simons, in press). Consequently, this index is ideally suited for

testing dispersion composition models (Chan, 1998; Schneider et al., 2002) but is not

necessarily an optimal index of agreement.

Average deviation (AD) indices. The AD index has been proposed by Burke, Finkelstein,

and Dusig (1999) as another measure of IRA. This measure, like rWG, was developed for

use with multiple judges rating a single target on a variable using an interval scale of mea-

surement. These authors described this index as a ‘‘pragmatic’’ index of agreement

because it estimates agreement in the metric of the original scale of the item. We concur.

The AD index may be estimated around the mean (ADM) or median (ADMd) for a group

of judges rating a single target on a single item:

ADMðjÞ=
PK
k=1

Xjk −Xj

�� ��
K

ð5Þ
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ADMdðjÞ=
PK
k=1

Xjk −Mdj
�� ��

K
, ð6Þ

where k= 1 to K judges, Xjk is the kth judge’s rating on the jth item, and Xj (Md
j
) is the

item mean (median) taken over judges. Burke et al. noted that the use of AD for medians

may be a more robust test. Similar to rWGðJÞ, AD can be calculated for J essentially paral-

lel items rated by K raters as follows:

ADMðJÞ=
PJ
j=1

ADMðjÞ

J
ð7Þ

ADMdðJÞ=
PJ
j=1

ADMdðjÞ

J
, ð8Þ

where all terms are as defined above and j= 1 to J essentially parallel items.

aWG indices. Finally, the most recently suggested estimate of IRA, aWG, was derived by

Brown and Hauenstein (2005) to address limitations they suggested with the family of

rWG indices (especially when the uniform null distribution was used to estimate rWG).

First, they argued that the rWG indices are scale dependent in that the lower bound of any

rWG index will be dependent on the number of scale anchors. For example, the authors

contended that results using rWG will be different depending on whether a researcher used

a 5-, 7-, or 9-point Likert-type scale. Second, they suggested that the sample size (i.e.,

number of judges) influences the values of rWG, which, consequently, influences the inter-

pretability of the results. This sample size dependency results from the use of the ratio of

observed sample variance to the population variance for the null distribution. Third, they

noted that researchers inaccurately assume that the null distribution is valid, an issue dis-

cussed at great length within the current article. With consideration mainly to the issue of

the null distribution often being invalid, Brown and Hauenstein developed the aWG index.

This index borrows from the logic of J. Cohen’s (1988) kappa, which estimates agreement

by computing a ratio of the percentage of cases agreeing minus a null agreement standard to

1 minus the null agreement standard. Brown and Hauenstein (2005) extended Cohen’s kappa

to the single target situation. As evident in Equation 9, the logic underlying the aWG index is

more complicated than that of either the rWG or AD indices. In short, aWG may be computed

for multiple judges rating a single target using an interval scale of measurement as

aWG = 1− 2∗S2
X�

ðH +LÞ∗X− ðX2Þ− ðH∗LÞ�∗ K=ðK− 1Þ½ �
, ð9Þ

where X is the observed mean rating taking over judges, H is the maximum possible value

of the scale, L is the minimum possible value of the scale, K is the number of judges, and

S2
X is the observed variance on X. As with other agreement indices, 1.0 indicates perfect
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agreement among judges. Brown and Hauenstein (2005) noted that the main difference

between rWG and aWG is that the former will stay constant regardless of the judges’ mean

rating, but the latter will vary dependent on the mean.

Similar to the rWGðJÞ and ADMðJÞ indices, a multi-item version of aWG exists when J

essentially parallel items are rated by K judges:

aWGðJÞ=
PJ
j=1

aWGðjÞ

J
: ð10Þ

Measures of IRR

The most popular measure of IRR has been the Pearson product-moment correlation cal-

culated by correlating ratings between judges over multiple targets (Schmidt, Viswesvaran,

& Ones, 2000). The use of Pearson product-moment correlations as measures of IRR has

been the source of recent debate. As noted earlier, pure measures of IRR are not commonly

used in multilevel research, thus we will not go into great detail discussing these indices.

Readers interested in learning more about the use of correlations to index IRR are directed

to articles by Viswesvaran, Ones, and Schmidt (1996), Murphy and DeShon (2000a,

2000b), Schmidt et al. (2000), LeBreton et al. (2003), and, most recently, Viswesvaran,

Schmidt, and Ones (2005).

Measures of IRA+ IRR

Intraclass correlations—individual raters. Although most researchers acknowledge that

ICCs furnish information about IRR (Bliese, 2000; James, 1982), few researchers have

acknowledged that many of the ICCs used in multilevel modeling actually furnish infor-

mation about IRR + IRA (LeBreton et al., 2003). Specifically, the one-way random

effects ICCs and two-way random effects or mixed effects ICCs measuring ‘‘absolute con-

sensus’’ are technically a function of both absolute rater consensus (i.e., IRA) and relative

rater consistency (i.e., IRR; LeBreton et al., 2003; McGraw & Wong, 1996). In general,

ICCs may be interpreted as the proportion of observed variance in ratings that is due to

systematic between-target differences compared to the total variance in ratings. Within

the context of multilevel modeling, the ICC based on the one-way random effects

ANOVA is the most common estimate of IRR + IRA. In this case, the targets (e.g., orga-

nizations, departments, teams, supervisors) are treated as the random effect. This ICC is

estimated when one is interested in understanding the IRR + IRA among multiple targets

(e.g., organizations) rated by a different set of judges (e.g., different employees in each

organization) on an interval measurement scale (e.g., Likert-type scale). This index has

been differently labeled by different researchers. In the current article, we adopt the nota-

tion of McGraw and Wong (1996),

ICCð1Þ= MSR −MSW

MSR + ðK− 1ÞMSW
, ð11Þ
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where MSR is the mean squares for rows (i.e., targets) and MSW is the mean square within

calculated from a one-way random effects ANOVA and K refers to the number of obser-

vations (e.g., ratings or judges) per target. Because this index simultaneously measures

IRA and IRR, high values may only be obtained when there is both absolute consensus

and relative consistency in judges’ ratings. In contrast, low values may be obtained when

there is low consensus, low consistency, or both (LeBreton et al., 2003). ICC(1) values

may be interpreted as the level of consensus + consistency one would expect if a judge

was randomly selected from the population of judges and his or her scores were compared

to the mean score (i.e., estimated true score) obtained from the sample of judges (Bliese,

2000; James, 1982). ICC(1) values may also be interpreted as an effect size estimate

revealing the extent to which judges’ ratings were affected by the target (e.g., the extent

that employee ratings of their organization’s climate are affected by their membership in

their organization; Bliese, 2000; Hofmann, Griffin, & Gavin, 2000).

In some instances, researchers may have multilevel data where each of the targets is

rated by the same set of judges. For example, 100 job applicants may have completed a

cognitive ability test, personality inventory, biodata survey, and a structured panel inter-

view. If all applicants were assessed by the same panel of interviewers, then one might

want to justify aggregating interviewer scores and then use these aggregate scores as a

level 2 predictor of job performance (along with the level 1 predictors of cognitive ability,

personality, and life history information). Aggregating interviewer ratings could be jus-

tified by estimating IRA using rWG (i.e., calculate one rWG for each of the 100 job

applicants) or by estimating IRR + IRA using a two-way ICC. If the researcher were

interested in generalizing to other judges, then judges would be treated as a random effects

variable, and he or she would calculate the ICC using the two-way random effects

ANOVA (where both the target and judge effects are random effects). If the researcher

were not interested in generalizing to other judges, then judges would be treated as a fixed

effects variable, and he or she would calculate the ICC using a two-way mixed effects

ANOVA (where the target effect is a random effect and the judge effect is a fixed effect).

Both ICCs are estimated as

ICCðA,1Þ= MSR −MSE

MSR + ðK− 1ÞMSE + K
N

MSC −MSEð Þ , ð12Þ

where MSR is the mean square for rows (i.e., targets), MSC is the mean square for

columns (i.e., judges), MSE is the mean square error all obtained from a two-way

ANOVA, and K refers to the number of observations (e.g., ratings or judges) for each of

the N targets. The procedure for interpreting ICC(A,1) values is the same as for ICC(1)
values (i.e., reliability of individual judges’ ratings or an estimate of effect size).

Intraclass correlations—group mean rating. The above ICCs have been used to estimate

the reliability of a single judge or rater; however, in multilevel modeling, researchers are

often more interested in understanding the extent to which the mean rating assigned by a

group of judges is reliable. In such cases, an ICC may be calculated that estimates the sta-

bility (i.e., reliability) of mean ratings furnished from K judges. When each target is rated
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by a different set of judges on an interval scale of measurement, the average score ICC

may be estimated using a one-way random effects ANOVA (where the target effect is the

random effect),
ICCðKÞ= MSR −MSW

MSR
, ð13Þ

where K refers to the number of judges, MSR is the mean squares for rows (i.e., targets),

and MSW is the mean square within calculated from a one-way random effects ANOVA.

This index has also been labeled the ICC(2) (Bartko, 1976; Bliese, 2000; James, 1982)

and the ICC(1,K) (Shrout & Fleiss, 1979); however, we retain the labels used by McGraw

and Wong (1996).

When each target is rated by the same set of judges, the average score ICC may be esti-

mated using a random (or mixed effects) two-way ANOVA,

ICCðA,KÞ= MSR −MSE

MSR + MSC −MSE
N

, ð14Þ

where N is the number of targets, MSR is the mean square for rows (i.e., targets), MSC
is the mean square for columns (i.e., judges), and MSE is the mean square error obtained

from a two-way ANOVA.

Basically, the values obtained for the ICC(K) and ICC(A,K) asymptotically approach

the values one would obtain by placing the ICC(1) and the ICC(A,1) into the Spearman-

Brown prophesy formula (the correction factor being K, the number of raters; Bliese,

1998, 2000). Like their single-judge counterparts, these average rating ICCs simulta-

neously assess IRR + IRA and may be interpreted as the IRR + IRA of a group’s mean
rating. Thus, if a new sample of targets were evaluated by a new set of K raters, then the

level of IRR + IRA between the two sets of means would be approximately equal to

ICC(K) or ICC(A,K) (James, 1982; LeBreton et al., 2003).

Methodological Questions Concerning the Estimation of IRA

Question 5: How do I know which type of IRA index I should use?

The particular index a researcher uses to estimate IRA is largely a matter of personal

preference. These estimates of agreement tend to yield highly convergent results, which is

not surprising given the similarity among their computational equations. Specifically,

most of the indices are a function of each judge’s deviation from the mean (or median) rat-

ing taken over judges. Whether those are absolute deviations or squared deviations varies

across indices (see previous equations), but because they are all a function of rater devia-

tions, they tend to be highly correlated with one another.

For example, Burke et al. (1999) showed that estimates of agreement calculated using

the rWG and AD indices tended to be highly correlated (often in the .90s). Brown and

Hauenstein (2005) showed that, in many instances, rWG and aWG yielded highly similar

estimates of agreement. Most recently, Roberson et al. (in press) conducted a very large
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and comprehensive Monte Carlo simulation that compared various measures of IRA or

dispersion. They found highly convergent results among the indices. Specifically, the

average (absolute value) of the correlations among SDX, AD, rWG, and aWG was .95, with

a range of .93 to .98.

In sum, because all of the measures of IRA described in the current article tend to yield

highly consistent conclusions, we do not see a reason to advocate one particular index

over another. Instead, we actually encourage researchers to use multiple indices to aid in

interpreting their data. rWG and aWG have the advantage of indexing agreement on a scale

ranging from 0 to 1.0. AD has the advantage of indexing agreement in the metric of the

original scales. It also does not require the specification of different null response distribu-

tions (although it can incorporate multiple nulls). Interpretation of multiple indices may

help researchers better understand the consensus (or lack thereof) in their data. The SDX

measure is really not used as a measure of agreement but more typically as a measure of

dispersion (Lindell & Brandt, 2000; Roberson et al., in press), and thus we encourage its

use with dispersion composition models (Chan, 1998).

Question 6: There are many different variants of the rWG index (e.g., rWG, rWGðJÞ, r∗WG,

r∗
WGðJÞ, rWGp, rWGpðJÞ); how do I know which form is correct for my multilevel analysis?

The rWG and rWGðJÞ indices were initially introduced by James et al. (1984). As discussed

in our answer to Question 4, these indices were designed to measure IRA by comparing

the observed variance in ratings furnished by multiple judges of a single target to the vari-

ance one would expect when the judges responded randomly. If judges were in perfect agree-

ment (i.e., all judges ‘‘see the same thing’’), the observed variance would be equal to 0

(i.e., S2
X= 0), and rWG would be equal to 1.0, denoting perfect agreement (i.e.,

rWG = 1− S2
X

s2
E

= 1− 0
s2
E

= 1). In contrast, if judges’ ratings were basically due to random

responding (i.e., judges lacked any level of agreement), the observed variance would approx-

imate the variance based on the theoretical null error distribution (i.e., S2
X=s2

E), and rWG

would be equal to 0, denoting perfect lack of agreement (rWG= 1− S2
X

s2
E

= 1− s2
E

s2
E

= 0). The

same applies for rWGðJÞ.

Thus, these indices normally assume values ranging from 0 (perfect lack of agreement)
to 1 (perfect agreement). However, when computing rWG and rWGðJÞ, it is possible for

researchers to obtain out-of-range values (i.e., values less than 0 or greater than 1). Such

values occur when the observed variance exceeds the theoretical null variance (i.e.,

S2
X >s2

E or �S2
X >s2

E). James et al. (1984) assumed that these out-of-range values were

because of sampling error and that they should simply be reset to 0 to indicate a complete

lack of agreement. The specific issues that give rise to out-of-range values are discussed

in greater detail under Question 7.

Instead of resetting out-of-range values to 0, Lindell and his colleagues (Lindell &

Brandt, 1999; Lindell, Brandt, & Whitney, 1999) recommended that researchers calculate

agreement using alternative indices of agreement, denoted r∗WG and r∗
WGðJÞ. These indices

are similar to the original indices proposed by James et al. (1984). In fact, r∗WG is calcu-

lated using the same equation as rWG but is allowed to assume negative values rather than
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have these values reset to 0. Consequently, rWG typically is equal to r∗WG because most

values of rWG are positive or 0. In contrast, the equation for r∗
WGðJÞ results in greater diver-

gences with rWGðJÞ:

r∗WGðJÞ= 1−
S

2

Xj

s2
E

, ð15Þ

where S
2

Xj
is the mean of the observed variances for J essentially parallel items and s2

E is

the expected variance if all judges responded randomly. The motivation to create r∗WGðJÞ
stemmed from a desire to create an estimate of IRA that could be used when maximum

disagreement existed among the judges (i.e., when the distribution of judges’ ratings is

bimodal, with half of the ratings occurring in the lowest rating category—a 1 on a 5-point

scale—and half occurring in the highest rating category number—a 5 on a 5-point scale).

Such a bimodal distribution suggests systematic disagreement, which causes rWG and

rWGðJÞ values to become negative or exceed unity (i.e., observed variance because of

systematic ‘‘disagreement’’ is greater than the theoretically expected variance because of

‘‘lack of agreement’’).

Another way of conceptualizing this bimodal phenomenon is to consider that a target

could have multiple true scores. For example, the theory of leader-member exchange posits

that, because of limited time and resources, a leader’s subordinates tend to cluster into an

‘‘in-group’’ (typified by high levels of trust, interaction, support, loyalty, and rewards) and an

‘‘out-group’’ (typified by low levels of trust, interaction, support, loyalty, and rewards;

Dienesch & Liden, 1986). In such an instance, it is possible that the leader has different true

scores on a measure of leader trust and support, conditional on whether he or she is being

rated by in-group or out-group members. When researchers believed that systematic dis-

agreement was present among judges, r∗
WGðJÞ offered a way to capture this disagreement.

As discussed below under Question 7, LeBreton, James, and Lindell (2005) recently

noted that the structural equation that is the basis for rWG and rWGðjÞ (and r∗WG and r∗
WGðJÞ)

does not permit a target to have multiple true scores. Consequently, the solution offered by

Lindell et al. (1999) may not be as applicable to conditions of disagreement as initially

thought. LeBreton et al. introduced a new index, rWGp, which permits a target to have multi-

ple true scores, one for each subgroup of raters (e.g., in-group vs. out-group); however, sub-

groups must be identified a priori, or else researchers run the risk of capitalizing on chance.

This index was denoted rWGp to emphasize that it is based on a pooled within-groups

variance (i.e., the average of the variances obtained for each subgroup) and is estimated as

rWGp = 1− S2
X:t

s2
E

, ð16Þ

where S2
X:t refers to the pooled variance within groups (i.e., the variance after removing

the ‘‘treatment effect,’’ denoted t, that distinguishes the true scores between the sub-

groups), and s2
E is the expected variance if all judges randomly responded. The pooled

within-groups variance may be obtained either by computing the weighted averages of the

individual variances or from the within-groups mean square from an analysis of variance

(LeBreton et al., 2005).
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LeBreton et al. (2005) concluded that ‘‘computing rWGp in this manner eliminates the

need for a distinction between rWG and r∗WG and, more significantly, eliminates the problem

of inadmissible rWGðJÞ values reported by Lindell and Brandt (1997)’’ (p. 135). We concur.

In short, if one does not have a priori reasons to believe that a target would have multiple

true scores corresponding to multiple subgroups of raters, one should use the traditional

rWG or rWGðJÞ indices. However, if one has an a priori reason to believe that multiple true

scores and subgroups exist, one is encouraged to estimate agreement using rWGp.

Question 7: I thought that the estimates obtained using rWG and rWGðJÞ were supposed to

range between 0 and 1, but sometimes I observe negative values or values that exceed

unity. What should I do when I obtain these out-of-range values?

In some instances, researchers may observe out-of-range rWG and rWGðJÞ and values (cf.

James et al., 1984; LeBreton et al., 2005; Lindell & Brandt, 1997; Lindell et al., 1999).

This occurs because the observed variance exceeds the expected variance for a random

response null distribution. In such instances, James et al. (1984) recommended resetting

out of range values to 0. However, this recommendation is predicated on the assumption

that the out-of-range values are attributed to sampling error. That is, they assumed that

small negative values (e.g., −:20<rWG < :00; LeBreton et al., 2005) were obtained sim-

ply because of sampling error and that, with a larger sample of judges, the values would

become proper (i.e., conform to the 0 to 1 range). However, there are at least two other

explanations for why one may observe out-of-range values (using either a uniform null

distribution or a null distribution containing a response bias).

First, out-of-range values could be obtained when the random response null distribution

has been incorrectly specified. For example, if we used the variance associated with a

slightly skewed null distribution when the true underlying distribution was uniform, we

have a downwardly biased estimate of error variance, which could result in negative esti-

mates of agreement. Second, LeBreton et al. (2005) noted that when a target has multiple

true scores (e.g., in-group vs. out-group ratings of leader trust and support), the observed

variance in judges’ ratings could become multimodal, and such a distribution could easily

engender out-of-range estimates of rWG and rWGðJÞ. In such instance, the alternative rWGp

index may be more appropriate (for more information, see response to Question 6 above)

or its multi-item extension, which we present as

rWGpðJÞ =
J 1− S

2
X:tðjÞ
s2
E

 !

J 1− S
2
X:tðjÞ
s2
E

 !
+ S

2
X:tðjÞ
s2
E

 ! , ð17Þ

where �S2
X:tðjÞ

is calculated as the average of the pooled within-groups variances across the

J essentially parallel items and s2
E is the expected variance when judges responded

randomly. We hasten to note that, similar to the single-item counterpart, the multi-item

rWGpðJÞ index requires homogeneity of error variances. If this assumption cannot be met,

researchers are encouraged to compute separate rWGðJÞ indices for each group.
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Because the values of rWG and rWGðJÞ range from 0 (complete lack of agreement) to 1

(complete agreement), negative values or values exceeding unity lack psychometric mean-

ing. We concur with James et al. (1984) that if one believes the negative values were

solely because of sampling error, they should be reset to 0—indicating a complete lack of

agreement. However, we would encourage researchers to also consider the possibility that

the negative values were obtained because of a misspecified null distribution or because

the set of judges actually contains two subsets of judges, each assigning the target a differ-

ent true score. If the problem is likely because of a misspecified null distribution, then the

researcher should consider modeling alternative, theoretically defensible null distributions

and use these to calculate agreement (see Questions 9 and 10 below). If the problem is

likely because of having multiple subgroups of judges (each assigning a different true

score to the target), then the researcher should consider estimating agreement using the

rWGp index (LeBreton et al., 2005). However, we echo the concerns raised by these

authors that these subgroups should be identified a priori (e.g., based on gender, race, job

types, work team, education level, leader member exchange ratings, etc.) to minimize

capitalizing on chance in defining the groups.

Question 8: How many judges for items do I need when I calculate rWG or rWGðJÞ?

The number of judges is one factor that has been found to affect the magnitude of the

family of rWG indices. James et al. (1984) and Lindell et al. (1999) suggested when the

number of judges (i.e., the sample size) is small, rWG values are attenuated. This is espe-

cially true when the agreement between these judges is not high. Lindell et al. (1999) and

Kozlowski and Hattrup (1992) suggested that 10 or more judges should be used to prevent

attenuation. A. Cohen, Doveh, and Eick (2001) found that both the number of judges and

the number of items should be considered when estimating rWGðJÞ. For example, in one

instance, Cohen et al. set the population value of rWGðJÞ= :75 for J = 6: Using a simula-

tion study, they found that with K= 10 judges, only 63% of the simulated samples

resulted in rWGðJÞ values > .70. However, when they increased the number of judges

to K= 100, the number of rWGðJÞ values > .70 increased to 84%. If instead of increasing

judges, the number of items were increased to J = 10, then the number of rWGðJÞ values > .70

would increase to 81%.

Basically, adding either more judges or more items tends to increase the magnitude of

rWGðJÞ values (at least when the true level of agreement is nonzero). LeBreton et al. (2005)

recently showed why adding items increases estimates of IRA. Using an independent deri-

vation of the agreement among judges on a linear composite of their judgments, they

showed that the Spearman-Brown prophecy formula is not restricted to reliability indices

but is also applicable to agreement indices. These authors showed that it is mathematically

acceptable to input rWG into the Spearman-Brown prophecy formula to estimate rWGðJÞ,
with the correction factor being J, the number of essentially parallel items. In short, adding

items enhances the internal consistency (i.e., reliability) of the composite, thus producing a

reduction in error variance. As a result, values of rWGðJÞ will tend to be larger than the esti-

mates of agreement based on r∗
WGðJÞ because the latter index does not adjust for the attenua-

tion in the observed level of agreement that is due to the unreliability in the ratings of the

individual items (LeBreton et al., 2005; Lindell, 2001). This means that adding items,
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everything else being equal, will result in higher values of rWGðJÞ. Similarly, adding judges,

everything else being equal, will also result in higher values of rWGðJÞ. This is because

given a constant pattern of ratings, the estimate of observed variance (S2
X or S

2

X) will

decrease as the sample size increases (Brown & Hauenstein, 2005).

One critical, yet often unrecognized, issue concerns the pragmatics of adding truly paral-

lel judges to estimate IRA (e.g., rWGðJÞ, ADMðJÞ). Judges are said to be parallel when their

target true scores are identical and their error scores are identically distributed with con-

stant variance. Consequently, in organizational research, the likelihood of having a large

number of truly parallel judges may be relatively slim because, at some point, the finite

pool of parallel judges will be exhausted, and, thus, many of the additional judges may tend

to be less qualified (e.g., less knowledgeable, less accurate, etc.). Stated alternatively, the

IRA indices reviewed in this article assume that judges are parallel; however, it is possible

that although some of the judges provide truly parallel measures, others may only provide

tau-equivalent or congeneric measures (Lord & Novick, 1968). A consequence of this lack

of truly parallel judges is that estimates of agreement will likely be attenuated.

This fact, coupled with the findings of A. Cohen et al. (2001), suggests there is probably

a trade-off between the number of judges and the number items needed to establish ade-

quate levels of IRA. Fewer judges can be compensated for by greater numbers of items,

and vice versa. In sum, in many instances, it appears that 10 judges will be sufficient for

estimating rWG or the rWGðJÞ; however, we strongly encourage researchers to consider the

number of items and the number of judges in their samples when making inferences about

agreement.

Question 9: Everyone seems to use the uniform null distribution when estimating agreement

using the rWG indices, and it gives me the highest estimate of agreement, so why would I

want to use another distribution?

To calculate the rWG indices, an estimate of the expected variance when there is a total

lack of agreement is needed. This estimate is based on a null distribution that represents a

total lack of agreement. Choosing the null distribution is the single greatest factor compli-
cating the use of rWG-based indices. This distribution is a conditional and theoretical distri-

bution. Basically, the researcher asks, ‘‘If raters responded randomly, then what would be

the form of the distribution of scores?’’

To date, the vast majority of researchers have relied on the uniform, or rectangular, null

distribution (LeBreton et al., 2003; Schriesheim et al., 2001). For example, on a 5-point scale,

each response option has an equal chance of being selected by a judge (i.e., 20% chance).

Therefore, the distribution will be flat and rectangular. Thus, the uniform distribution is only

applicable in situations where the scales are discrete and a complete lack of agreement would

be hypothesized to be evenly distributed across response options (i.e., mathematically ran-

dom). However, James et al. (1984) noted that in many instances, random responding will

not correspond to a uniform distribution because judges’ ratings could be affected by various

response biases (e.g., leniency bias). In such instances, alternative distributions should be

used to estimate the variance expected when judges randomly respond.

According to James et al. (1984), researchers should ask themselves, ‘‘If there is no true

variance and agreement is zero, what distribution would best fit our response bias and
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some measurement error?’’ There are several distributions commonly used for rWG: trian-

gular (corresponding to a central tendency bias), skewed (corresponding to leniency and

severity biases), and uniform (corresponding to the lack of biases). James et al. specifi-

cally recommended estimating the rWG indices using multiple, theoretically defensible

null distributions. However, with a few notable exceptions, researchers largely ignored

these recommendations and relied almost exclusively on the uniform null (Schriesheim

et al., 2001).

We see two potential reasons for this preference for the uniform null. First, because the

uniform null yields the largest estimate of error variance, it also yields the largest values

of rWG. Thus, there is a strong disincentive for using any of the alternative distributions

because estimates of IRA will always be lower using such distributions. Second, the

variance of a uniform null distribution is easily obtained:

s2
EU = A2 − 1ð Þ

12
, ð18Þ

where A is the number of response options. Thus, for a 7-point scale, the expected null

variance is ð72 − 1Þ � 12= 4. Although estimating the variance of a uniform null distribu-

tion is easy and straightforward, no simple equation exists for estimating the variance of

the alternative distributions. Thus, a second reason that researchers may have avoided

using alternative null distributions was the lack of easily accessible estimates of error

variances associated with these distributions.

Nevertheless, the uniform null distribution is only appropriate when one may assume

that none of the judges’ ratings were affected by biases. Given the extant literature demon-

strating the pervasiveness of such cognitive and affective biases, this assumption will

rarely (if ever) be fully met (cf. Baltes & Parker, 2000; Borman, 1991; Cardy & Dobbins,

1994; Cooper, 1981; Feldman, 1981; Fisicaro, 1988; Fisicaro & Lance, 1990; Fisicaro &

Vance, 1994; Funder, 1987; Harris, 1994; Ilgen, Barnes-Farrell, & McKellin, 1993;

Murphy & Balzer, 1989; Murphy & Cleveland, 1995; Sulsky & Balzer, 1988; Varma,

DeNisi, & Peters, 1996). Consequently, reliance on the uniform null distribution will often

yield inflated estimates of agreement (Brown & Hauenstein, 2005; James et al., 1984;

Kozlowski & Hattrup, 1992; LeBreton et al., 2003). Given the ubiquity of response biases
in organizational research, we call for a moratorium on the unconditional (i.e., unjustified)
use of any null distribution, especially the uniform null distribution. Instead, we challenge

each researcher to justify the use of a particular null distribution, uniform or otherwise, in

his or her research study.

Question 10: Okay, you’ve convinced me that I should use multiple distributions, but how do

I go about determining which distributions to use, and how do I estimate the variances for

these other distributions?

As noted above, deciding which alternative null distributions to estimate rWG should be

based on theory. For example, LeBreton et al. (2003) examined the levels of agreement in

ratings on executives furnished by various sources (e.g., self-ratings, peer ratings, subordinate

ratings, supervisor ratings). These authors sought to examine the levels of agreement between

and within rating sources and estimated agreement using the rWG index. In addition to the
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uniform or rectangular null distribution, they used references to the rating bias literature to

justify null distributions based on leniency biases (i.e., slightly skewed and moderately

skewed null distributions) and a central tendency bias (i.e., a quasi-normal distribution). For

another example using climate data, see Kozlowski and Hults (1987).

After identifying theoretically defensible null distributions based on various response

biases, it is necessary to calculate the expected variance associated with those distributions.

To date, when researchers have used alternative null distributions to estimate s2
E, they have

relied heavily on the values furnished by James et al. (1984) for 5-point scales having

leniency or severity biases (i.e., skewed distributions) or a central tendency bias (i.e., a tri-

angular distribution). To facilitate researchers incorporating multiple null distributions into

their research, we extended the values presented by James et al. for 5-point scales and cre-

ated a table of variance estimates for various null distributions (see Table 2). This table is

not meant to be exhaustive but rather to give researchers guidance concerning variance

estimates for alternative null distributions. This table furnishes the expected variances

based on certain response distributions. The pattern of responses giving rise to these distri-

butions was based on our judgment but is consistent with previous discussions of null dis-

tributions by James et al. (1984). For example, we estimated the expected null variance for

a heavily skewed distribution (e.g., strong leniency bias) for judges using a 6-point scale

based on 0% of judges endorsing a 1 or 2, 5% endorsing a 3, 10% endorsing a 4, 40%

endorsing a 5, and 45% endorsing a 6. This yielded an expected null variance of .69.

Question 11: Okay, I’ve calculated rWG using multiple null distributions. How do I know

which rWG to use when justifying aggregation, and how should I go about reporting all of

the rWGs that I calculated?

Once a researcher has identified multiple, theoretically defensible null distributions, he

or she must then calculate separate rWG estimates (for each target) using each null distribu-

tion. Even with relatively modest sample sizes, this type of analysis can result in a large

number of rWG indices. For example, assume that a researcher has data from 10 groups of

5 workers who were asked to rate three dimensions of climate. This researcher has identi-

fied three null distributions for use with rWG and is interested in understanding whether or

not she can justify aggregating individual climate perceptions to the group level. Such an

analysis would result in a total of 10 (number of groups) × 3 (number of dimensions) × 3

(number of null distributions), or 90, rWG estimates. How should this researcher summarize

and report his or her results? One recommended solution is to report separate mean rWG

estimates for each climate dimension using each null distribution (A. Cohen et al., 2001;

LeBreton et al., 2003). Thus, the researcher would only need to have a table reporting 9

mean rWG values, not 90 individual rWG values. Furthermore, he or she could furnish addi-

tional descriptive information about the distribution of observed rWG values for each null

distribution (e.g., mean, standard deviation, range) and the percentage of rWG values that

exceed his or her a priori cutoff used to demonstrate sufficient IRA exists for aggregating

data. He or she may also consider a graphical display of the frequency distribution of rWG

scores (A. Cohen et al., 2001).

Some researchers might argue that individual rWG values should be reported instead of

descriptive statistics summarizing the distributions of rWG values. Although we agree that
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Table 2

Expected Error Variances σ2
E Based on the Proportion

of Individuals Endorsing Each Response Option

Proportion Endorsing Each Value (5-Point to 11-Point Scale)

Response Option 1 2 3 4 5 6 7 8 9 10 11 s2
E

Distributions: 5-point scale

Slight skew .05 .15 .20 .35 .25 1.34

Moderate skew .00 .10 .15 .40 .35 0.90

Heavy skew .00 .00 .10 .40 .50 0.44

Triangular .11 .22 .34 .22 .11 1.32

Normal .07 .24 .38 .24 .07 1.04

Uniform .20 .20 .20 .20 .20 2.00

Distributions: 6-point scale

Slight skew .05 .05 .17 .20 .33 .20 1.85

Moderate skew .00 .05 .10 .15 .40 .30 1.26

Heavy skew .00 .00 .05 .10 .40 .45 0.69

Triangular .05 .15 .30 .30 .15 .05 1.45

Normal .05 .10 .35 .35 .10 .05 1.25

Uniform .17 .17 .17 .17 .17 .17 2.92

Distributions: 7-point scale

Slight skew .05 .05 .10 .15 .15 .30 .20 2.90

Moderate skew .00 .05 .10 .10 .15 .35 .25 2.14

Heavy skew .00 .00 .05 .10 .15 .30 .40 1.39

Triangular .05 .10 .20 .30 .20 .10 .05 2.10

Normal .02 .08 .20 .40 .20 .08 .02 1.40

Uniform .14 .14 .14 .14 .14 .14 .14 4.00

Distributions: 8-point scale

Slight skew .03 .03 .07 .12 .12 .18 .25 .20 3.47

Moderate skew .00 .03 .08 .11 .15 .19 .25 .19 2.79

Heavy skew .00 .00 .05 .10 .10 .15 .25 .35 2.35

Triangular .03 .10 .16 .21 .21 .16 .10 .03 2.81

Normal .01 .05 .16 .28 .28 .16 .05 .01 1.73

Uniform .13 .13 .13 .13 .13 .13 .13 .13 5.25

Distributions: 9-point scale

Slight skew .05 .05 .08 .08 .10 .10 .16 .22 .16 5.66

Moderate skew .03 .03 .05 .07 .08 .10 .14 .29 .21 4.73

Heavy skew .00 .00 .05 .05 .10 .10 .15 .25 .30 3.16

Triangular .03 .05 .10 .17 .30 .17 .10 .05 .03 3.00

Normal .00 .03 .08 .20 .38 .20 .08 .03 .00 1.58

Uniform .11 .11 .11 .11 .11 .11 .11 .11 .11 6.67

Distributions: 10-point scale

Slight skew .03 .03 .05 .08 .10 .10 .12 .12 .20 .17 6.30

Moderate skew .00 .03 .03 .08 .08 .10 .10 .13 .25 .20 5.09

Heavy skew .00 .00 .00 .05 .08 .10 .10 .12 .25 .30 3.46

Triangular .00 .05 .08 .12 .25 .25 .12 .08 .05 .00 2.89

Normal .00 .00 .05 .15 .30 .30 .15 .05 .00 .00 1.45

Uniform .10 .10 .10 .10 .10 .10 .10 .10 .10 .10 8.25

(continued)
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in some instances the individual rWG values may be informative, in many instances the

number of rWG values being computed makes providing individual values impractical.

Returning to the LeBreton et al. (2003) example, these authors examined IRA within and

between sources of multisource performance ratings. A total of 3,851 target managers

were evaluated on 16 different dimensions of performance using variance estimates from

three different null response distributions. Thus, simply examining the IRA between

self-ratings and boss ratings involved the calculation of 3,851 × 16 × 3 = 184,848

estimates of rWG. Because these authors reported all possible within- and between-source

comparisons, the number of rWG estimates easily exceeded 1,000,000. Consequently,

reporting individual rWG estimates was not feasible; instead, the researchers elected to

provide descriptive information about the distributions of rWG values calculated using

different null response error distributions.1

Methodological Questions Concerning the Estimation of IRR + IRA

Question 12: If the average score ICC is always higher than the individual score ICC, then

shouldn’t I always use the average score ICC?

James (1982) noted that because the ICC(K) is basically the Spearman-Brown applied

to the ICC(1), it is possible to take small values of ICC(1) and obtain sizeable values of

ICC(K). For example, if the ICC(1) value for a particular rating scale was .20, then using

22 raters would yield an ICC(K) of approximately .85, and using 35 raters would yield an

ICC(K) of approximately .90. Higher scores do not imply that researchers should always

use the ICC(K) or ICC(A,K) to index agreement. The decision to compute and use ICCs

based on individual ratings or average score ratings should be based on theoretical reasons.

ICC(1) is appropriate if a researcher is interested in drawing inferences concerning IRR +
IRA of individual ratings. This is rarely the case in organizational research because we

typically sample multiple judges’ ratings (e.g., employee climate ratings) for each target

(e.g., organizations). Instead, within the context of multilevel modeling, the ICC(1) is typi-

cally used to provide an estimate of effect size (Bliese, 2000; Bryk & Raudenbush, 1992;

Table 2 (continued)

Proportion Endorsing Each Value (5-Point to 11-Point Scale)

Response Option 1 2 3 4 5 6 7 8 9 10 11 s2
E

Distributions: 11-point scale

Slight skew .02 .03 .03 .08 .08 .09 .10 .11 .12 .20 .14 7.31

Moderate skew .00 .03 .03 .05 .07 .09 .09 .12 .12 .22 .18 6.32

Heavy skew .00 .00 .00 .03 .05 .07 .08 .12 .15 .20 .30 4.02

Triangular .00 .03 .07 .10 .15 .30 .15 .10 .07 .03 .00 3.32

Normal .00 .00 .02 .08 .20 .40 .20 .08 .02 .00 .00 1.40

Uniform .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 .09 10.00

Note: Proportions used to estimate variance associated with a quasinormal distribution were obtained using

the procedures described in Smith (1970).
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Hofmann et al., 2000) indicating the extent to which individual ratings (e.g., climate rat-

ings) are attributable to group membership (e.g., organizations).

In contrast, the ICC(K) is appropriate when a researcher is interested in drawing infer-

ences concerning the reliability of mean ratings (Bliese, 2000; James, 1982; LeBreton

et al., 2003). Because multilevel composition models involve justifying aggregation based

on estimates of IRA and using these mean estimates as a higher level variable (e.g., a

level-two predictor in hierarchical linear modeling), the ICC(K) or the ICC(A,K) are often

used to justify aggregating such data. Thus, ICC(1) informs a researcher as to whether

judges’ ratings are affected by group membership, whereas the ICC(K) tells him or her

how reliably the mean rating (taken over judges) distinguishes between groups (Bliese,

2000; Hofmann, 2002). Consequently, because these indices answer different research ques-

tions, one’s question should drive the use of ICC(1) (e.g., Does group membership affect

judges’ ratings?) or ICC(K) (e.g., Do judges’ mean ratings reliably distinguish among the

groups/targets? Is there sufficient IRR + IRA to justify aggregating my data?).

Question 13: How many judges do I need when calculating ICC(K) or ICC(A,K)?

As noted earlier, the ICC(K) and ICC(A,K) are designed to assess the stability of judges’

mean ratings. These estimates furnish information about the IRR + IRA present in the

mean ratings from a set of judges. As noted in our response to Question 17, researchers

should set an a priori cut point indicative of minimally acceptable IRR + IRA (e.g., ICC

> .80 demonstrates minimally acceptable IRR + IRA). Once this criterion has been set,

researchers may conduct a small pilot study to estimate the ICCs. Based on these pilot stu-

dies, researchers could increase or decrease the number of judges used in the final study.

This is conceptually analogous to conducting a ‘‘G Study’’ prior to a ‘‘D Study’’ using

generalizability theory (Cronbach, Gleser, Nanda, & Rajaratnam, 1972). Alternatively,

researchers could look at the research literature to help estimate the number of judges

needed to obtain a particular ICC value.

For example, take a hypothetical scenario where a group of researchers have spent sev-

eral years collecting data examining an aggregate measure of climate. These researchers

collected data from more than 100 organizations and sampled roughly 5 employees per

organization (they could have just as easily sampled 20 or 30 employees). After complet-

ing their data collection, they calculated ICC(1) = .12, but because they only had 5 raters

per organization, their ICC(K) = .41. Emergent group-level effects are unlikely to appear

with such a low ICC(K) value (Bliese, 1998, 2000). Better planning would have enabled

this research team to collect the necessary data to test for multilevel effects. For a second

example, a bank would like to assess the relationship between customer satisfaction and

branch performance. Researchers have collected preliminary data suggesting customer

satisfaction ratings have an ICC(1) = .10. Using this number, they estimate how many

customers need to be sampled at each bank branch to produce reliable mean differences

across branches—they are shooting for an ICC(K) = .85. They estimate that 50 customers

per bank branch will suffice. This number is much fewer than the 100 customers originally

proposed. Thus, the researchers were able to save thousands of dollars by better planning

their multilevel project.
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Methodological Questions Concerning the

Interpretation of IRR, IRA, and IRR + IRA

Question 14: What values of IRA are necessary to justify aggregation in a multilevel analy-

sis, and do these values vary as a function of null distributions?

rWG and aWG indices. Values of .70 have been used as the traditional cut point

denoting high versus low IRA using both the rWG indices (Lance, Butts, & Michels, 2006;

LeBreton et al., 2003) and the aWG indices (Brown & Hauenstein, 2005). Concerning the

rWG indices, this value was first reported by George (1990), who obtained it from a perso-

nal communication with Lawrence R. James, one of the creators of rWG. LeBreton et al.

(2003) recently offered an expanded explanation for the .70 cutoff. In short, rWG is inter-

preted as the proportional reduction in error variance. Higher scores indicate greater reduc-

tion in error variance and, thus, higher levels of agreement. A value of .70 suggests that

there has been a 70% reduction in error variance. Consequently, just 30% of the observed

variance among judges’ ratings should be credited to random responding (i.e., error

variance).

Although the .70 cut point has been a useful heuristic, we advance that researchers

should think more globally about the necessity of high versus low within-group agreement

based on their particular research question and composition model. Clearly, some compo-

sition models do not require any level of agreement (e.g., pure compilation models—

Bliese, 2000; or additive models—Chan, 1998) whereas other models require establishing

some minimal level of agreement (e.g., partial isomorphism composition models—Bliese,

2000; or direct consensus models—Chan, 1998). We believe that the .70 cut point artifi-

cially dichotomizes agreement in a manner that is inconsistent with James et al.’s (1984)

original intention, and it may not be useful for justifying aggregation in multilevel

models.

Consequently, in Table 3, we present a more-inclusive set of guidelines for interpreting

agreement that may be helpful to organizational researchers. These guidelines are simply

heuristics to guide researchers when evaluating their estimates of IRA. We should mention

that any heuristic, ours included, is arbitrary. Heuristics such as p< :05, power > .80, or

specific values for small, medium, and large effect sizes (J. Cohen, 1988) are just arbitrary

‘‘lines in the sand.’’ So too is the traditional .70 cutoff value used in the past and the more-

inclusive set of standards we are offering. Nevertheless, we believe that this more-inclusive

set of standards may be beneficial for organizational researchers because in many instances

an absolute standard for IRA > .70 may be too high, but in other instances this value may

be too low. Artificially dichotomizing decisions concerning agreement is problematic,

especially when researchers fail to consider the type of composition model they are testing,

the quality of measures being used to test that model, and the significance of the decisions

being made as a result of aggregation.

Specifically, our set of standards was based on the logic articulated by Nunnally and

Bernstein (1994). Although these authors discussed standards for interpreting reliability

coefficients, we nevertheless concur with their conclusion that the quality of one’s mea-

sures (i.e., judges’ ratings) should be commensurate with the intensity of the decision being

made based on those measures. For important decisions involving specific individuals
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(e.g., who gets hired, fired, or promoted), we believe that it is necessary to demonstrate

very strong agreement (> .90). In contrast, other research questions may only necessitate

the establishment of moderate to little agreement.

We also recommend that researchers consider the psychometric quality and validity

evidence for the measures they wish to aggregate and use this information to guide the a

priori determination of the minimal level of agreement needed to justify aggregation.

Specifically, a value of .70 may be acceptable for newly developed measures (e.g., a new

measure assessing a climate for sexual harassment), but it may not be high enough for

well-established measures that have been subjected to greater psychometric tests and have

greater validity evidence available (e.g., Organizational Climate Questionnaire; James &

Jones, 1974). In the latter cases, higher values may be necessary to demonstrate that

judges are truly ‘‘seeing the same thing.’’ Remember, an rWG= :70 suggests that 30% of

the variance in ratings is still error variance.

We also believe the values used to justify aggregation (e.g., rWG > :80) should not vary

based on the particular null distribution being used to estimate rWG. We mention this

because rWG values estimated using distributions containing various response biases (e.g.,

leniency bias) will be lower in magnitude than those estimated using the uniform null

distribution (see Questions 9, 10 and Table 2). Thus, there is a strong disincentive for

researchers to estimate rWG using distributions other than the uniform distribution. We

acknowledge this disincentive but challenge researchers to use sound professional judg-

ment when choosing which null distributions to use to estimate rWG (see also Question 9)

and challenge reviewers to hold authors accountable for the decisions they make involving

null distributions. That being said, the value used to justify aggregation ultimately should

be based on a researcher’s consideration of (a) the quality of the measures, (b) the serious-

ness of the consequences resulting from the use of aggregate scores, and (c) the particular

composition model to be tested.

AD indices. Although the AD indices appear to be a useful and intuitively appealing

metric for assessing IRA, the determination of the range of scores that would represent ade-

quate agreement is yet to be finalized. Burke and Dunlap (2002) presented some initial

guidelines for establishing these ranges for AD estimates based on a uniform response

distribution. Specifically, they suggested high agreement was obtained when the AD values

for 5-, 7-, 9-, and 11-point scales were less than 0.8, 1.2, 1.5, and 1.8, respectively. These

critical values provide a useful set of heuristics for researchers interested in using the AD
indices in their work. However, additional research is needed to delineate the standards for

Table 3

Revised Standards for Interpreting Interrater Agreement (IRA) Estimates

Level of IRA Substantive Interpretation

.00 to .30 Lack of agreement

.31 to .50 Weak agreement

.51 to .70 Moderate agreement

.71 to .90 Strong agreement

.91 to 1.00 Very strong agreement
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establishing appropriate levels of agreement when judges’ ratings may have been influ-

enced by various response biases.

Question 15: In a related question, are empirical procedures available for drawing inferences

concerning estimates of IRA?

In addition to the practically significant heuristics described above, researchers might

also be interested in inferring the statistical significance of IRA values. Because the sam-

pling distributions of most estimates of IRA remain unknown, researchers have begun

using data simulations to help draw statistical conclusions about agreement (A. Cohen

et al., 2001; Dunlap, Burke, & Smith-Crowe, 2003). For example, A. Cohen et al. simu-

lated the sampling distribution for a situation where rWG was computed using a uniform

null distribution. Specifically, they simulated a situation where a single item was rated by

a group of 10 judges using a 5-point scale. They found that the rWG value at the 95th per-

centile of the sampling distribution was .217. Thus, one could compare one’s observed

rWG values to this critical value to determine if the level of observed agreement was statis-

tically greater than that expected when judges responded randomly.

Although such statistical tests permit one to infer whether the level of IRA is greater

than that expected because of random responding, they do not necessarily permit the infer-

ence that judges are homogenous enough to warrant data aggregation (A. Cohen et al.,

2001). Consequently, when trying to determine if data should be aggregated, we encou-

rage researchers to combine statistical significance tests (e.g., Is the observed level of

agreement greater than zero?) with practical significance tests (e.g., If agreement is greater

than zero, is it greater than some practically meaningful heuristic?). Researchers interested

in learning more about calculating statistical significance tests are referred to A. Cohen

et al. (2001) and Dunlap et al. (2003).

Question 16: My observed values of IRA are ‘‘good’’ for some groups but ‘‘bad’’ for others.

What should I do? Do I drop groups with low levels of agreement, or do I keep them in

my analysis?

It is possible to have high agreement and low agreement, both within one data set. How-

ever, James et al. (1984) do not recommend focusing on point estimates of agreement but

instead on calculating multiple estimates of rWG based on multiple, theoretically defensi-

ble null distributions. In this case, one would make conclusions about the extent of agree-

ment, within a data set, using a range of values. We concur with James et al. (1984) and

strongly encourage researchers to model multiple, theoretically defensible null distribu-

tions and interpret the range of rWG values.

Along the same lines, we suggest that researchers examine the pattern of results. For

example, if 85% of the rWG estimates are below the cut point a researcher set to justify

aggregation (e.g., rWG > :75), then he or she is probably not justified in aggregating his or

her data, even if some of the values are much higher than the cut point. Similarly, if multi-

ple null distributions are modeled, then a researcher is able to develop quasi–confidence

intervals for agreement based on the smallest (e.g., heavily skewed distribution) and lar-

gest (e.g., uniform distribution) estimates of error variance (James et al., 1984). If only

5% of the estimates using multiple nulls contain values less than that cut point, then he or
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she is probably justified in aggregating his or her data. Ultimately, researchers should

make judgments based on the magnitude and pattern of rWG values.

Researchers should also consider several other options when both high and low levels

of agreement are demonstrated within a single data set. First, it is possible to drop those

groups, divisions, or organizations that lack appropriate agreement to justify aggregation.

However, we caution that this low agreement may be systematic over certain targets and

important to examine, perhaps as a dispersion composition model (Chan, 1998). Also, los-

ing potentially valuable data is never recommended. For example, if a researcher were

examining organizational-level data, removing organizations with low agreement could

result in deleting thousands of individual-level cases from a meaningful percentage of his

or her organizations (e.g., 6 out of 30 organizations), which could be problematic. Another

possible alternative is to aggregate all groups, even those that lack proper levels of rWG.

This could be done as long as some of the groups or organizations do have sufficiently

high rWG values. One problem with this approach is that researchers might be diluting

their results by mixing groups that agree with those that lack agreement. Last, one might

decide to aggregate all groups or organizations but include a dummy variable as a possible

moderator. This dummy variable would label groups as either having sufficient or insuffi-

cient agreement. These are tough decisions, and ultimately theory and sound judgment

should guide decisions regarding aggregation. Estimates of IRA simply serve to support

or refute one’s theory (e.g., direct consensus models vs. dispersion models; Chan, 1998).

Question 17: What values of IRR + IRA are necessary to justify aggregation in a multilevel

analysis?

As noted earlier, ICC(1) can be interpreted as the IRR + IRA of individual ratings;

however, this is rarely the case in organizational research because we typically sample

multiple judges’ ratings (e.g., employee climate ratings) for each target (e.g., organiza-

tions). Instead, the ICC(1) is typically interpreted as a measure of effect size (Bliese,

2000; Bryk & Raudenbush, 1992), revealing the extent to which individual ratings are

attributable to group membership. Thus, when interpreting values for ICC(1), we encou-

rage researchers to adopt traditional conventions used when interpreting effect sizes (i.e.,

percentage of variance explained). Specifically, a value of .01 might be considered a

‘‘small’’ effect, a value of .10 might be considered a ‘‘medium’’ effect, and a value of .25

might be considered a ‘‘large’’ effect (see Murphy & Myors, 1998, p. 47). For example,

an ICC(1) = .05 represents a small to medium effect, suggesting that group membership

(e.g., employing organization) influenced judges’ ratings (e.g., employees responses to a

climate survey). Thus, values as small as .05 may provide prima facie evidence of a group

effect. Such a finding would warrant additional investigations concerning the viability of

aggregating scores within groups (e.g., estimating within-group agreement via rWG).

In contrast, because ICC(K) and ICC(A,K) are often interpreted as measures of IRR +
IRA, researchers may be tempted to apply traditional reliability cutoffs (e.g., Nunnally &

Bernstein, 1994). However, researchers should be reminded that high values of these

indices are only obtained when there is both high IRR and high IRA. Furthermore, low

ICCs may be obtained when there is low IRA, low IRR, or both. When considering the
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value of an ICC, it is important to understand what is driving that low value (i.e., is it

because of low consistency, low consensus, or both?).

Reliability coefficients are defined as the proportion of true score variance to total score

variance (Gulliksen, 1950; Lord & Novick, 1968; Nunnally, 1978). A value of .70 sug-

gests that 70% of the variance in judges’ ratings is systematic, or true score variance,

whereas 30% of the variance is random measurement error variance. As described in

Question 14, the minimum acceptable level of reliability for psychological measures in

the early stages of development is .70 (Nunnally, 1978). Higher levels may be required of

measures in the later stages of development, such as those used in advanced field research

and practice. Nunnally and Bernstein (1994) noted,

A reliability of .80 may not be nearly high enough in making decisions about individuals . . . if

important decisions are being made with respect to specific test scores, a reliability of .90 is the

bare minimum, and a reliability of .95 should be considered the desirable standard. (p. 265)

Lance et al. (2006) noted that many researchers have blindly relied on the .70 value with-

out adequate consideration being given to the appropriateness of this value. Most aggre-

gate ratings used in multilevel modeling are not used to make important decisions about

specific individuals but instead about groups or organizations. So in most instances,

ICC(K) and ICC(A,K) values > .90 are likely unnecessary. However, depending on the

quality of the measures being used in the multilevel analysis, researchers will probably

want to choose values between .70 and .85 to justify aggregation.

In addition to being interpreted as measures of IRR, ICC(K) and ICC(A,K) are also inter-

preted as measures of IRA. As such, researchers may be tempted to use traditional agreement

cutoffs when interpreting ICCs. As noted earlier, a value of .70 has frequently been used as

the demarcation of high versus low IRA indexed via rWG (Lance et al., 2006; LeBreton et al.,

2003). Although rWGs and ICCs are conceptually distinct indices, both are interpreted on a

scale ranging from 0 to 1.0, both inform about the proportion of observed variance that is

measurement error variance, both incorporate between-judge variance into estimates of error

variance, and both are reasonable indices of IRA (A. Cohen et al., 2001; James et al., 1984,

1993; Kozlowski & Hattrup, 1992; LeBreton et al., 2003; McGraw & Wong, 1996).

Although reliability and agreement are conceptually distinct concepts, they may never-

theless be estimated using a single ICC. The commonly used cut point of .70 is by no

means a definitive rule; it is simply a heuristic that is frequently (and inappropriately)

invoked in research (Lance et al., 2006). For researchers wanting to justify aggregation,

we suggest (as above) that they set an a priori cut point for the value of ICC they feel is

acceptable given their particular research question and the quality of their measures. For

example, a researcher using well-established measures seeking to aggregate climate rat-

ings to draw inferences about group-level climate ! individual-level job satisfaction

linkages may set a cut point of .75 or .80. In contrast, a researcher aggregating panel

interviewer ratings to make inferences about aggregate-level interview performance !
individual-level job performance linkages may need to set a much higher cut point (e.g.,

.90 or .95) because of the important consequences such inferences have for individuals.

Question 18: What is causing my estimates of IRR and IRA to diverge from one another

(e.g., high agreement but low reliability)?
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LeBreton et al. (2003) discussed how high levels of IRR do not guarantee high levels of

IRA and vice versa. This is easily illustrated using a scenario where we have two raters

evaluate three targets using a 5-point scale. These two sets of ratings may be relatively

consistent with one another (Rater 1 = 1, 2, and 3; Rater 2 = 3, 4, and 5), yet they

clearly lack absolute consensus. Empirically, we obtain high correlations estimating IRR

(r= 1:0). However, the lack of rating consensus yields extremely low estimates of IRA

(rWGs computed using a uniform null distribution were 0.00, 0.00, and 0.00) and an extre-

mely low estimate of IRR + IRA (ICC(1) = 0.00). In this instance, the divergence

between estimates of IRR and IRA was because of differences in the absolute magnitude

of ratings.

Because IRA assesses the interchangeability or absolute consensus in ratings, one might

assume that it would always be more difficult to obtain high levels of IRA compared to

IRR, which only assesses the relative consistency in ratings. However, LeBreton et al.

(2003) demonstrated how it is possible to have high levels of IRA yet low levels of IRR

and IRR + IRA. They showed that when between-target variance becomes substantially

restricted, correlation-based estimates of IRR and IRR + IRA are attenuated. In such

instances, researchers relying solely on ICCs to justify aggregation could make very erro-

neous decisions.

For example, in a new scenario, we ask two new raters to evaluate 10 targets using a

7-point rating scale (Rater 1 = 1, 2, 1, 1, 2, 6, 7, 6, 7, 7; Rater 2 = 2, 2, 1, 1, 2, 7, 7, 6,

6, 7). Using these data, we obtain high estimates of IRR (r= :97), IRA (average

rWG = :95; estimated using a uniform null distribution), and IRR + IRA (ICC(1) = .97).

However, when we separately estimate IRR and IRA for the first 5 targets and then for the

second 5 targets, we obtain very different results. Within each group, our estimates of IRR

and IRR + IRA are extremely low (r= :17, ICC(1)= .27). We remind the reader that the

relative rank orders within each set have not changed. The only thing that has changed is

that we have restricted our variance. Mathematically, when we estimated IRR and IRR +
IRA using all 10 targets, we had a 7-point scale. Our results indicated that the judges did a

very good job of consistently distinguishing those targets that deserve 1s or 2s from those

that deserve 6s or 7s. When we run separate analyses, our 7-point scale is mathematically

transformed into a 2-point scale (i.e., we know that ratings were made on a 7-pont scale,

but only 2 of the scale points were actually used). When we run separate analyses, we see

that our judges did a very poor job of distinguishing 1s from 2s and 6s from 7s.

In short, it is possible for strong levels of IRA to be masked by subtle inconsistencies in

rank orders. This is especially pronounced when the between-target variance is restricted

(e.g., all targets are rated high or low). LeBreton et al. (2003) concluded that the ‘‘exami-

nation of both IRR and IRA statistics represents a form of psychometric checks and bal-

ances concerning [interrater similarity]’’ (p. 121). We concur and encourage researchers

to compute both types of indices when their data permits. By calculating both sets of

indices, researchers will be better able to understand if their data lack reliability, agree-

ment, neither, or both.

Question 19: I am planning to use the rWG index to justify aggregating my data prior to con-

ducting my multilevel analysis. Can I still use rWG if I have missing data?
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Another way to phrase this question is to ask, ‘‘What are the implications of missing

data for the computation IRA indices and how should I deal with such missing data?’’

This is an area with relatively little empirical work to guide our answer. How one goes

about defining missing will shape the conclusion one draws concerning how missing data

affect estimates of IRA. Newman and Sin (in press) noted that data may be missing com-

pletely at random (MCAR), where ‘‘the probability that data on a given variable unob-

served is independent of the value of that variable, as well as the values of all other

variables’’ (pp. 3-4). At the other extreme, a researcher might have data missing not-at-

random (MNAR), where ‘‘the probability of missing data on a variable [such as job satis-

faction] depends on the value of [job satisfaction]’’ (p. 4). For example, workers who are

unhappy with their jobs (i.e., low scores) may be less likely to return surveys asking about

their job (e.g., job satisfaction surveys). This would result in a within-group variance

restriction and, one would suspect, an upwardly biased estimate of within-group agreement.

In their simulation study, Newman and Sin confirmed this hypothesis and concluded that

when data were MNAR, rWGðJÞ substantially overestimates IRA. Interestingly, they also

found that when data were MCAR, rWGðJÞ tended to slightly underestimate IRA. Based on

these findings, we urge caution when analyzing data with missing observations. Newman

and Sin provided formulas for estimating the impact of missing data and gave specific

recommendations for how to lessen the influence of missing data on estimates of IRA.

Thus, if a researcher has missing data, we recommend he or she examine his or her data

and try to determine if data are missing randomly or systematically. If the pattern appears

random, then he or she is probably safe using rWGðJÞ. However, if the pattern appears sys-

tematic (or it is impossible to determine), then he or she should probably not proceed

using rWGðJÞ because the estimates are likely substantially (upwardly) biased. Further-

more, researchers are referred to Newman and Sin’s study for equations that can be used

to correct for missing data.

Question 20: Is it appropriate to treat the values of IRA indices as actual variables in a multi-

level model?

Yes. This is precisely the idea behind multilevel dispersion models (Chan, 1998). With

these types of models, the psychological meaning of the higher-level variable is the disper-

sion or variance in the lower-level variable. For example, Schneider et al. (2002) demon-

strated that the strength of climate perceptions (i.e., within-group agreement, or lack

thereof) moderated the relationship between employee perceptions of customer service cli-

mate and customer ratings of satisfaction (see also González-Romá, Peiró, & Tordera,

2002). However, if one is testing a dispersion model, then conceptually it makes more

sense to use a measure of interrater dispersion (e.g., SDX) rather than a measure of IRA

(e.g., rWG; see Lindell & Brandt, 2000; Roberson et al., in press; Schneider et al., 2002).

Conclusion

The prevalence of multilevel modeling techniques in the organizational sciences

continues to increase. This only makes sense given that organizations, by definition, con-

tain multiple layers or levels ranging from the individual worker to the multinational
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conglomerate. Multilevel researchers often rely on estimates of IRR and IRA to justify the

aggregation of a lower-level variable (e.g., individual climate perceptions) into a higher-

level variable (e.g., shared psychological climate). Thus, as multilevel modeling has

increased in popularity, so too has the use of IRA indices and IRR indices. The purpose of

the current article was to ask and answer some of the questions faced by researchers using

these indices in their research. The list of questions was by no means definitive or exhaus-

tive; other questions remain, and still more will be uncovered. We hope the current article

at least addressed some of the more common questions about IRA and IRR, especially

within the context of multilevel modeling.

Appendix A

Tutorial on Estimating Interrater Reliability (IRR) and Interrater Agreement (IRA)

All of the above-referenced indices are easily calculated using modern statistical soft-

ware (e.g., SPSS, SAS). Although each of these indices may be calculated in SPSS using

point and click, we decided to use the Syntax option in SPSS so that individuals could

copy and paste our code into SPSS. To use this option, one must simply open SPSS and

then open a new syntax window (File ! New ! Syntax). The following analyses were

based on the data presented in Appendix B1.

Restructuring the Data

Prior to calculating our estimates of IRR, IRA, and IRR + IRA, we need to restructure

our data. This is accomplished using the following syntax. Simply copy and paste this syn-

tax into SPSS and click run:

SORT CASES BY Target.

CASESTOVARS

/ID = Target

/GROUPBY = VARIABLE.

EXECUTE.

Running the above syntax on the data in Appendix B1 yields the data in Appendix B2.

By examining these data, you will see that each target was not necessarily rated by the

same number of judges. Thus, there are some missing values in our restructured data set.

The following syntax recodes these missing data to 999 and labels them as missing values

in SPSS, yielding the data in Appendix B3.

RECODE ITEM1.1 to ITEM2.5 (MISSING = 999).

MISSING VALUES ITEM1.1 to ITEM2.5 (999).

EXECUTE.

Estimate rWG

We will assume the data listed under the variables Item1.1 to 1.5 are ratings on a cli-

mate item measuring leader trust and support furnished by employees working in four

(continued)
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different work teams (targets). Thus, Item1.1 is a generic label referring to the first rating

furnished for each work team, Item1.2 is a generic label referring to the second rating

furnished for each work team, and so on. Alternatively stated, each score in the column

was furnished by a different person assigned to one of the four teams. Thus, we have a total

of 18 unique ‘‘participants’’ or ‘‘judges’’ spread out over four different teams. We hope to

justify aggregating climate perceptions within each work team and decide to use rWG to jus-

tify aggregation. To estimate rWG, we must estimate the observed variance within each

team. This is accomplished using the following SPSS syntax:

COMPUTE obs_var1 = var(item1.1,item1.2,item1.3,item1.4,item1.5).

EXECUTE.

The above code computes a new variable, obs_var1, that is the variance observed

within each target (work team) across each set of raters (team members) on the first cli-

mate item measuring leader trust and support. All new variables computed as part of this

tutorial are presented in Appendix B4.

Next, we compare the observed variances to the variance we would expect when judges

respond randomly. We believe that one form of random response might involve a rectan-

gular or equal probability distribution (assuming a 5-point response scale, s2
E= 2:0). We

also believe that employees might also have a tendency to ‘‘go easy’’ on their work teams,

thus inflating their climate perceptions because of a slight leniency bias (s2
E= 1:34). We

estimate rWG using both possible null response distributions:

COMPUTE rwg1_un = 1-(obs_var1/2).

COMPUTE rwg1_ss = 1-(obs_var1/1.34).

EXECUTE.

To facilitate interpretation, we will only examine the rWG values estimated using the

uniform distribution. For all teams, we see that rWG > :80, suggesting strong agreement.

Thus, based on the rWG estimates, we are probably justified in aggregating these data to

the team level.

Estimate ADM

We also estimated the AD about the mean rating for each team:

COMPUTE MEAN1 = mean(item1.1,item1.2,item1.3,item1.4,item1.5).

COMPUTE AD1 = mean(abs(item1.1-mean1),abs(item1.2-mean1),abs(item1.3-mean1),

abs(item1.4-mean1), abs(item1.5-mean1)).

EXECUTE.

Burke and Dunlap (2002) suggested a critical value of .80 or less for establishing agree-

ment when using a 5-point scale. Comparing our observed results to this critical value

reveals that, in all instances, our teams demonstrated high levels of within-group agree-

ment. Thus, the results obtained using ADM confirmed those obtained using rWG.

Appendix A (continued)
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Estimate ICC(1) and ICC(K)

We continue to treat Item1.1 to Item 1.5 as climate scores furnished by different

employees working as members of different work teams and estimate the ICC(1) and

ICC(K):

RELIABILITY

/VARIABLES = Item1.1 Item1.2 Item1.3 Item1.4 Item1.5

/SCALE(ALPHA) = ALL/MODEL = ALPHA

/ICC = MODEL(ONEWAY) CIN = 95 TESTVAL = 0.

EXECUTE.

Unlike the code for rWG, this code does not involve computing new variables. Instead,

it calculates the ICC values and prints them in an output window. Examining this window,

we see that the ICC(1) = .60. This is a large effect size, suggesting that climate ratings

were heavily influenced by team membership. The ICC(K) = .88 reveals high levels if

IRR + IRA and suggests that the mean ratings (taken over judges) reliably distinguish

the four teams. Thus, given the pattern of rWG and ADM values just obtained, along with

the sizeable ICC(K), we feel comfortable aggregating our data to the team level.

Estimate rWGðJÞ

We will again use the data in Appendix B3 and assume that the data are measuring one

dimension of climate (e.g., leader trust and support); however, now we will assume that

each dimension was assessed using two items. Item1.1 to Item1.5 corresponds to the

ratings on the first item (e.g., ‘‘My supervisor is willing to listen to my problems’’) and

Item2.1 to Item2.5 corresponds to the ratings on the second item (e.g., ‘‘My supervisor

can be trusted’’). To summarize, we have scores on two climate measures furnished by

individuals nested in four different teams. Team 1 and Team 2 each have 5 members,

whereas Team 3 and Team 4 each have 4 members. To estimate rWGðJÞ, we must first esti-

mate the variance on each item across the raters within each team. The variance for the

first item has already been computed. Below, we estimate the variance of the second item

and then calculate the average variance over the two items:

COMPUTE obs_var2 = var(item2.1,item2.2,item2.3,item2.4,item2.5).

COMPUTE avg_var = mean(obs_var1,obs_var2).

EXECUTE.

Using this new variable avg_var, we estimate rWGðJÞ using both uniform and slightly

skewed null distributions:

COMPUTE rwgj_un = (2∗(1-avg_var/2))/((2∗(1-avg_var/2)) + avg_var/2).

COMPUTE rwgj_ss = (2∗(1-avg_var/1.34))/((2∗(1-avg_var/1.34)) + avg_var/1.34).

EXECUTE.

Appendix A (continued)
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Again, we limit our comments to the uniform distribution. As we can see, the rWGðJÞ
values are higher when we estimated agreement based on two items compared to when we

estimated agreement based on a single item. Specifically, all rWGðJÞ values exceed .85.

This suggests that strong agreement exists among the judges within each team, and so we

are safe to aggregate climate data to the team level.

Estimate ADMðJÞ

The results obtained using rWGðJÞ are confirmed using ADMðJÞ:

COMPUTE MEAN2 = mean(item2.1,item2.2,item2.3,item2.4,item2.5).

COMPUTE AD2 = mean(abs(item2.1-mean2),abs(item2.2-mean2),abs(item2.3-mean2),

abs(item2.4-mean2), abs(item2.5-mean2)).

COMPUTE ADJ = mean(AD1,AD2).

EXECUTE.

Above, we estimated the mean for the second item and the AD for each team member’s

rating about the mean rating for his or her team. Finally, we calculated the average of our

two AD indices. All of our obtained ADMðJÞ values were well below the critical value of

.80 suggested by Burke and Dunlap (2002) for use with 5-point scales.

To recap, we found strong levels of within-group agreement using the single-item rWG

and ADM indices. This agreement was confirmed using the multi-item extensions rWGðJÞ
and ADMðJÞ. The large ICC(1) suggested that group membership exerted a large influence

on team member ratings, and the ICC(K) suggested that the mean score could reliably dis-

tinguish between teams. Taken together, these results indicate that we are probably justi-

fied in aggregating our individual climate data to the team level.

We should mention that these data were specifically contrived to yield clean and easily

interpreted results. However, it is often the case that results obtained using estimates of

IRA and IRR + IRA will not be so easily interpretable. For example, assume we have

climate data on 10 teams. Teams 1 to 7 have rWG values of .90 or higher and ADM values

of .40 or lower. However, Teams 8 to 10 have rWG values less that .60 and ADM values

of .95 or higher. Furthermore, the ICC(K) = .68. Assuming that we had set a priori cut-

offs for agreement of ADM < :80 and rWG > :80, we are now at a tough decision point.

Should none of the data be aggregated to the team level? Should only those teams that

exceed the minimum cutoffs be aggregated? Or should we risk it and aggregate all teams

because the vast majority (70%) had adequate agreement? This is a tough question to

answer. If we only aggregate the teams with adequate IRA, then we are effectively delet-

ing 30% of our sample. If we aggregate all of the data and argue that the low agreement

for Teams 8 to 10 was because of sampling error, then we could be wrong and might

dilute any significant findings. If we do not aggregate any of the data, then we are unable

to test our multilevel hypothesis. Clearly, tough questions do not have easy answers. In

this situation, we might run both sets of aggregate analyses (i.e., aggregate all teams and

only those with adequate IRA) and report any discrepancies in the tests of our multilevel

hypotheses.

Appendix A (continued)
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Estimate rWGp

We now turn to the data presented in Appendix C. We have slightly restructured how

we present the data. We now have three different leaders, each of whom is evaluated by

six subordinate employees. Focusing only on Item 1 and assuming a 5-point scale, we

could estimate rWG using a uniform null distribution for each set of raters as

SORT CASES BY Leader.

SPLIT FILE

SEPARATE BY Leader.

DESCRIPTIVES

VARIABLES = Item1

/STATISTICS = MEAN STDDEV VARIANCE MIN MAX.

The above syntax basically asks SPSS to sort the data by leader and then splits the file

into three data sets (one for each leader). Next, we ask SPSS to run basic descriptive statis-

tics on the first climate item measuring leader trust and support. We obtain the following

within-leader variances: 2.667, 2.967, and 2.967. If we then manually estimate rWG using

Equation 1 and an expected null variance of 2.0 (uniform random response), we obtain esti-

mates of −0.33, −0.48, and −0.48. Following the recommendations of James, Demaree,

and Wolf (1984, 1993), we could reset these values to zero and conclude lack of agreement.

However, let us now assume that prior to obtaining subordinate climate ratings of leader

trust and support, we first collected data on a measure of leader-member exchange and

used these data to determine which subordinates were in each leader’s in-group and which

were in his or her out-group. These data are presented under the variable status, with

1= in-group and 2= out-group. We could use this a priori distinction to group individuals

and estimate rWGp. Provided that the homogeneity of variance assumption was not vio-

lated (LeBreton, James, & Lindell, 2005), we could proceed to estimate the pooled (i.e.,

weighted average) within-group variance. As noted by LeBreton et al. (2005), the easiest

way to obtain this estimate is from the error mean square from an ANOVA. Because we

want to come up with a unique estimate for each leader, we again sort and split the file by

leader. Next, we calculate a one-way ANOVA using in-group or out-group status as our

independent variable and scores on Item 1 as our dependent variable:

SORT CASES BY Leader.

SPLIT FILE

SEPARATE BY Leader.

UNIANOVA

item1 BY status

/METHOD = SSTYPE(3)

/INTERCEPT = INCLUDE

/EMMEANS = TABLES(status)

/PRINT = HOMOGENEITY

/CRITERIA = ALPHA(.05)

/DESIGN = status.

Appendix A (continued)
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Referencing our output, we see that our three sets of analyses (i.e., split by leader)

resulted in relatively small mean square error (i.e., average variance within the in-group

and the out-group). For our three leaders, we obtained mean square error estimates of

.667, .333, and .333, respectively. We also see that none of the analyses violated the

homogeneity of variance assumption (i.e., the variance on Item 1 was statistically identi-

cal for in-group and out-group members). Using the uniform null distribution to estimate

our error variance (s2
E= 2:0), we manually estimated rWGp using Equation 8 and obtained

values of .67, .83, and .83. These results indicate that, within each subgroup of raters,

there is reasonable agreement concerning climate perceptions involving leader trust and

support. Examining the means for each of the three groups reveals that in-group members

(status = 1) have higher ratings compared to out-group members (status = 2). Within

the context of multilevel modeling, we are probably not justified in aggregating all six

ratings within each leader, but we are justified in aggregating the ratings into an

in-group and out-group set of climate perceptions.

Estimate rWGpðJÞ

The above logic is easily extended to J = 3 parallel items. Essentially, we replicate the

above analyses for Items 2 and 3 by running separate ANOVAs for each leader, confirm-

ing homogeneity of variance, and getting the pooled within-groups variance estimates

from the mean square error for each leader analysis. Next, we calculate the average of the

pooled within-groups variances. This is basically the average of the average within-group

item variances. From our example data, we found average mean square error estimates of

.611, .333, and .333, respectively. Using these values in conjunction with Equation 9, we

estimate separate rWGpðJÞ values, one for each leader. Because we had three essentially

parallel items, our estimates of rWGpðJÞ are slightly higher than those for rWGp: .87, .94,

and .94, respectively. Examining the means for the in-groups and out-groups, our new

results confirm what we found when we used only a single item. In-groups had higher

mean ratings for each leader across all three items compared to the out-groups. Although

the in-groups and out-groups disagree with one another concerning the perceptions of lea-

der trust and support, within each subgroup there is substantial agreement. Consequently,

we are probably justified to aggregate data to the subgroup level (i.e., calculate aggregate

scores for the in-group and out-group for each leader), but we are not justified in aggregat-

ing all data to the leader level (i.e., we should not aggregate perceptions of leader trust

and support across all six raters for each leader because there is substantial lack of agree-

ment between in-groups and out-groups).

Appendix B1

Sample Multilevel Data Set 1

The following data are arranged in a common multilevel format. In this example, there are

four targets (e.g., team leaders) rated on two items. Targets 1 and 2 were each rated by five

judges (e.g., team members), whereas Targets 3 and 4 were each rated by four judges.

Appendix A (continued)

(continued)
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Appendix B2
Sample Multilevel Data Set 1—Restructured

Below are the data from Appendix B1 after being rearranged to conform to an SPSS-

friendly, multilevel format. As above, we have four targets (e.g., team leaders) rated on

two items. Targets 1 and 2 were each rated by five judges (e.g., team members), whereas

Targets 3 and 4 were rated by four judges.

Appendix B3
Sample Multilevel Data Set 1—Restructured and Missing Data Recoded

Below are the data from Appendix B2, following the missing data recodes. As above,

we have four targets (e.g., team leaders) rated on two items. Targets 1 and 2 were each

rated by five judges (e.g., team members), whereas Targets 3 and 4 were rated by four

judges. Missing values are now coded 999.

Target Item1 Item2

1 4 4

1 5 5

1 4 4

1 5 5

1 4 4

2 4 5

2 4 4

2 3 5

2 3 4

2 3 3

3 3 3

3 3 4

3 3 4

3 4 3

4 4 3

4 5 2

4 5 4

4 4 3

Appendix B (continued)

Target Item1.1 Item1.2 Item1.3 Item1.4 Item1.5 Item2.1 Item2.2 Item2.3 Item2.4 Item2.5

1 4 5 4 5 4 4 5 4 5 4

2 4 4 3 3 3 5 4 5 4 3

3 3 3 3 4 . 3 4 4 3 .

4 4 5 5 4 . 3 2 4 3 .

Target Item1.1 Item1.2 Item1.3 Item1.4 Item1.5 Item2.1 Item2.2 Item2.3 Item2.4 Item2.5

1 4 5 4 5 4 4 5 4 5 4

2 4 4 3 3 3 5 4 5 4 3

3 3 3 3 4 999 3 4 4 3 999

4 4 5 5 4 999 3 2 4 3 999
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Appendix B4

Sample Multilevel Data Set 1—New Variables

New variables are computed by applying the syntax in Appendix A to the data in

Appendix B3.

Appendix C

Sample Multilevel Data Set 2

Note

1. Alternatively, if one is less interested in examining the judges’ agreement for each individual target and
instead seeks a global or overall estimate of agreement across targets, he or she might consider using LeBreton
et al. (2005)’s rWGp index. As noted under Questions 6 and 7, rWGp furnishes a single estimate of agreement
based on a pooled within-groups estimate of variance. For example, instead of reporting separate rWGs for
each of 100 work teams, a researcher may instead decide to report a single, global estimate of (pooled)
within-groups agreement. Even in situations where examining the judges’ agreement for each target is deemed
important, researchers may still find it useful to also calculate rWGp because it provides a single overall esti-
mate of the agreement.
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2 1 5 5 5

2 2 1 2 2

2 2 1 2 1
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3 1 5 4 4
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3 1 4 5 5

3 2 2 2 1

3 2 2 1 1

3 2 1 1 2

LeBreton, Senter / Interrater Reliability and Interrater Agreement 849



Bartko, J. J. (1976). On various intraclass correlation reliability coefficients. Psychological Bulletin, 83,

762-765.

Bliese, P. D. (1998). Group size, ICC values, and group-level correlations: A simulation. Organizational
Research Methods, 1(4), 355-373.

Bliese, P. D. (2000). Within-group agreement, non-independence, and reliability: Implications for data aggre-

gation and analysis. In K. J. Klein & S. W. Kozlowski (Eds.), Multilevel theory, research, and methods in
organizations (pp. 349-381). San Francisco: Jossey-Bass.

Borman, W. C. (1991). Job behavior, performance, and effectiveness. In M. D. Dunnette & L. M. Hough

(Eds.), Handbook of industrial and organizational psychology (2nd ed., vol. 2, pp. 271-326). Palo Alto,

CA: Consulting Psychologists Press.

Brown, R. D., & Hauenstein, N.M.A. (2005). Interrater agreement reconsidered: An alternative to the rWG

indices. Organizational Research Methods, 8(2), 165-184.

Burke, M. J., & Dunlap, W. P. (2002). Estimating interrater agreement with the average deviation index: A

user’s guide. Organizational Research Methods, 5(2), 159-172.

Burke, M. J., Finkelstein, L. M., & Dusig, M. S. (1999). On average deviation indices for estimating interrater

agreement. Organizational Research Methods, 2(1), 49-68.

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models: Application and data analysis methods.

Newbury Park, CA: Sage.

Cardy, R. L., & Dobbins, G. H. (1994). Performance appraisal: Alternative perspectives. Cincinnati, OH:

South-Western.

Chan, D. (1998). Functional relations among constructs in the same context domain at different levels of ana-

lysis: A typology of composition models. Journal of Applied Psychology, 83, 234-246.

Cohen, A., Doveh, E., & Eick, U. (2001). Statistical properties of the rWGðjÞ index of interrater agreement.

Psychological Methods, 6, 297-310.

Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence

Erlbaum.

Cooper, W. H. (1981). Ubiquitous halo. Psychological Bulletin, 90, 218-244.

Cronbach, L. J., Gleser, G. C., Nanda, H., & Rajaratnam, N. (1972). The dependability of behavioral measure-
ments. New York: John Wiley.

Dienesch, R. M., & Liden, R. C. (1986). Leader-member exchange model of leadership: A critique and further

development. Academy of Management Review, 11, 618-634.

Dunlap, W. P., Burke, M. J., & Smith-Crowe, K. (2003). Accurate tests of statistical significance for rwg and

average deviation interrater agreement indices. Journal of Applied Psychology, 88, 356-362.

Feldman, J. M. (1981). Beyond attribution theory: Cognitive processes in performance appraisal. Journal
of Applied Psychology, 66, 127-148.

Fisicaro, S. A. (1988). A reexamination of the relation between halo error and accuracy. Journal of Applied
Psychology, 73, 239-244.

Fisicaro, S. A., & Lance, C. E. (1990). Implications of three causal models for the measurement of halo error.

Applied Psychological Measurement, 14, 419-429.

Fisicaro, S. A., & Vance, R. J. (1994). Comments on the measurement of halo. Educational and Psychological
Measurement, 54, 366-371.

Funder, D. C. (1987). Errors and mistakes: Evaluating the accuracy of social judgement. Psychological Bulle-
tin, 101, 75-90.

George, J. M. (1990). Personality, affect, and behavior in groups. Journal of Applied Psychology, 75, 107-116.
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Abstract
The multilevel paradigm is omnipresent in the organizational sciences, with scholars recognizing data are almost always 
nested – either hierarchically (e.g., individuals within teams) or temporally (e.g., repeated observations within individuals). 
The multilevel paradigm is moored in the assumption that relationships between constructs often reside across different 
levels, often requiring data from a lower-level (e.g., employee-level justice perceptions) to be aggregated to a higher-level 
(e.g., team-level justice climate). Given the increased scrutiny in the social sciences around issues of clarity, transparency, 
and reproducibility, this paper first introduces a set of data aggregation principles that are then used to guide a brief literature 
review. We found that reporting practices related to data aggregation are quite variable with little standardization as to what 
information and statistics are included by authors. We conclude our paper with a Data Aggregation Checklist and a new 
R package, WGA (Within-Group Agreement & Aggregation), intended to improve the clarity and transparency of future 
multilevel studies.

Keywords Multilevel modeling · Multilevel analysis · Interrater agreement · rWG · Data aggregation

Over the last several decades, organizational scholars have 
embraced the multilevel paradigm as one of the primary 
organizing frameworks for their scholarship. It is important 
to recognize that phrases such as “multilevel research” and 
“multilevel modeling” are generic phrases that are often 
used when referring to three distinct but interconnected fac-
ets of the multilevel paradigm: multilevel theory, multilevel 
measurement & design, and multilevel analysis (Humphrey 
& LeBreton, 2019). Multilevel theory refers to theories span-
ning multiple construct levels, which may be hierarchically 
and/or temporally nested (cf. Chen et al., 2005; Cronin & 
Vancouver, 2019; Dansereau et al., 1999; George & Jones, 
2000; Gully & Phillips, 2019; House et al., 1995; Klein 
et al., 1994; Klein et al., 1999; Kozlowski & Klein, 2000; 
Mathieu & Luciano, 2019; Mitchell & James, 2001; Morge-
son & Hofmann, 1999). These theories focus on explicat-
ing the relationships that exist between constructs residing 

across different levels including individual, dyadic, group/
team, departmental, divisional, organizational, industry, and 
even geographic areas. Multilevel theory allows researchers 
to generate hypotheses regarding the relationships between 
constructs, both within and across levels. To wit, a central 
tenet of the multilevel paradigm is that constructs at one 
level of analysis (e.g., climate at the team-level) may impact 
other constructs at similar or lower levels (e.g., efficacy at 
the team level; job satisfaction at the individual level).

One of the distinct qualities of multilevel theory is that 
higher-level constructs (e.g., team justice climate) may 
have origins in lower-level units (e.g., individuals’ percep-
tions of workplace justice). The higher-level construct is 
said to emerge (i.e., cohere into a new structure) through 
the interactions of the lower-level units (e.g., team-member 
interactions with one another and/or their team leader; team-
member exposure to critical events and experiences). The 
higher-level construct (e.g., team climate) may function (i.e., 
exert a causal impact on other variables in the multilevel-
nomological network) in a manner that is distinct from the 
lower-level construct from which it originates (e.g., justice 
climate may exert a unique influence on individual-level 
job-satisfaction, even after controlling for individual-level 
perceptions of justice; cf. Firebaugh, 1978; Gully & Phillips, 
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2019; Kozlowski & Klein, 2000; Kozlowski et al., 2013; 
Mathieu & Luciano, 2019; Morgeson & Hofmann, 1999; 
Ostroff, 1993).

Multilevel measurement (and design) refers to the meth-
odological aspects of multilevel research. These aspects 
include topics such as sampling of observations at different 
levels of analysis and the phrasing of questions on surveys 
(Zhou et al., 2019), the scaling (centering) of measures 
(Hofmann & Gavin, 1998; Kreft & de Leeuw, 1998), esti-
mating the statistical power of tests of multilevel hypoth-
eses (Mathieu et al., 2012; Scherbaum & Ferreter, 2009; 
Scherbaum & Pesner, 2019), addressing issues of missing 
data (Grund et al., 2018, 2019), designing studies to capture 
the actual processes of emergence (Kozlowski et al., 2013; 
Mathieu & Luciano, 2019), and estimating effect sizes to 
describe the impact of nesting lower-level units in higher-
level units, as well as the variance explained in lower-level 
outcomes using both higher-level and lower-level predictors 
(cf. Aguinis & Culpepper, 2015; Hofmann, 1997; LaHuis 
et al., 2014; LaHuis et al., 2019).

One of the most important elements of multilevel research 
involves the measurement of (and accumulation of validity 
evidence for inferences related to) focal constructs (Chen 
et al., 2005; Tay et al., 2014; Jebb et al., 2019). Complicat-
ing the measurement and validation of focal constructs is 
the fact that some constructs may need to be measured at a 
lower level (e.g., individual-level perceptions of work envi-
ronment) before being aggregated to a higher level (e.g., 
means representing team-level climate; cf. Bliese, 2000; 
Bliese et al., 2019; Chan, 1998; James, 1982; James et al., 
1984; Kozlowski & Hattrup, 1992; Kozlowski & Klein, 
2000; Kozlowski et al., 2013; Krasikova & LeBreton, 2019; 
Mathieu & Luciano, 2019; Wittmer & LeBreton, 2021).

Finally, multilevel analysis refers to the statistical and 
inferential aspects of multilevel research. These aspects 
include broad analytic frameworks such as random coef-
ficient regression analyses (Bliese et al., 2018; Hofmann, 
1997; Hox, 2010; Raudenbush & Bryk, 2002; Shiverdecker 
& LeBreton, 2019; Snijders & Bosker, 2012), multilevel 
structural equations analyses (Heck & Thomas, 2015; 
Mehta & Neale, 2005; Preacher et al., 2010; Vandenberg 
& Richardson, 2019), growth models (Bliese & Ployhart, 
2002; Byrk & Raudenbush, 1987), ecological momentary 
assessment (Beal & Weiss, 2003; Shiffman, 2014), multi-
level social network analyses (Borgatti et al., 2013; Borgatti, 
Mehra, Brass & Labianca, 2009; Brass & Borgatti, 2019), 
and approaches for analyzing dyadic data (Atkins, 2005; 
Kenny et al., 2006; Knight & Humphrey, 2019; Krasikova 
& LeBreton, 2012).

Although multilevel theory, measurement, and analy-
sis are often discussed as though they are separable and 
distinct aspects of multilevel research, they are neverthe-
less inextricably intertwined (Rousseau, 1985). Multilevel 

measurement is sterile without a deep understanding of the 
theoretical underpinnings of the focal constructs — Where 
do these constructs originate? What is their structure and 
function? Who is best suited to provide information about 
each of the focal constructs? What is the appropriate refer-
ent for evaluating focal constructs? If lower-level data (e.g., 
individual perceptions) are to be aggregated to a higher 
level for analysis (e.g., team-climate), does one’s multilevel 
theory require substantial agreement among the lower-level 
units prior to aggregating the data to the higher level? Like-
wise, the inferences drawn from a multilevel analysis may 
be severely misguided without a deep understanding of 
how theory and measurement shape the data analytic plan 
— How does the scaling of variables impact the accuracy 
of inferences drawn from multilevel analyses? What type of 
analysis is appropriate for hypotheses examining reciproc-
ity effects between members of distinguishable dyads? How 
should I scale my data to provide unbiased tests of a cross-
level moderation hypothesis? Finally, the accuracy of one’s 
inferences from a multilevel analysis is conditional on the 
proper alignment of theory, method, and analysis. Stated 
alternatively, failure to align one’s statistical analyses with 
one’s theory and the proper measurement of focal constructs 
may result in drawing improper inferences and conclusions 
(cf. Bliese & Hanges, 2004; Firebaugh, 1978; Greenland, 
2002; James & Williams, 2000; Lopilato & Vandenberg, 
2014; Mossholder & Bedeian 1983; Ostroff, 1993; Yam-
marino & Gooty, 2019; Zhang et al., 2009).

Much has been written about the critical role of multi-
level measurement in the alignment of theory, measurement, 
analysis, and inference (cf. Bliese, 2000; Chan, 1998; James 
et al., 1984, 1993; Klein & Kozlowski, 2000; LeBreton & 
Senter, 2008; Ostroff, 1993). However, ambiguity in how 
decisions related to multilevel measurement are reported 
(or not reported) in contemporary multilevel studies draws 
into question the reproducibility of previous findings, thus 
undermining the confidence researchers may have in infer-
ences and conclusions obtained in prior multilevel studies.

Toward Improved Clarity 
and Reproducibility of Multilevel Research

Researchers in the social sciences are navigating what some 
have referred to as a reproducibility or replicability crisis. 
This is an issue regarding the credibility surrounding schol-
arly knowledge due to the lack of ability of scholars to rep-
licate the results of published research findings. For exam-
ple, researchers for The Reproducibility Project: Psychology 
found that only 37% of published, statistically significant 
findings could be replicated. The other 63% of findings 
resulted in statistically non-significant results when research-
ers sought to replicate them (Open Science Collaboration, 
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2015). To address concerns related to reproducibility and 
replicability, researchers have begun adopting open science 
practices designed to provide greater levels of clarity and 
transparency regarding their data, methods, and analyses 
(Banks et al., 2019). Indeed, two of the defining character-
istics of influential and robust scholarship include transpar-
ency and the ability to replicate prior findings (Grand et al., 
2018). To reproduce published findings or replicate those 
findings using new data, the primary sources must provide 
clear and transparent descriptions of their methods and anal-
yses. The purpose of the current paper is to contribute to 
this conversation about transparency and clarity, specifically, 
within the context of multilevel research.

Consider multilevel researchers who compute statistics 
such as rWG (James et al., 1984) to help justify aggregating 
lower-level data to a higher-level. These researchers must 
make decisions concerning the estimation of the statistic 
(e.g., which version of rWG to use; which null distribution 
or distributions to use; what value of rWG will be considered 
“sufficient” for justifying data aggregation; how out-of-range 
values will be treated; how groups lacking sufficient agree-
ment will be treated). The replicability of multilevel research 
hinges on researchers clearly reporting these decisions and 
the rationale they used to make them.

The purpose of the current paper is to review data aggre-
gation reporting practices and to offer a set of recommen-
dations that may further improve the clarity of reporting 
practices. Our paper is structured as follows. First, we dis-
cuss important issues related to data aggregation within the 
context of multilevel research. From this discussion, we 
extract a few key recommendations that we believe, if fol-
lowed, will result in greater transparency and reproducibility 
of multilevel research. Next, we summarize the results of 
a brief review of multilevel studies and discuss the extent 
to which the reporting practices in these studies comport 
with our recommendations. Specifically, we summarize the 
type of information and statistics included and omitted from 
published multilevel studies involving data aggregation. We 
then provide a Data Aggregation Checklist derived from our 
recommendations. Finally, we introduce a new R package 
designed to facilitate the estimation and reporting of data 
aggregation statistics. We illustrate the utility of this package 
with a brief tutorial using publicly available data.

Moving forward, we will use an example of individuals 
(lower-level units) nested within teams (higher-level units). 
The focal construct is a higher-level construct, justice cli-
mate. This construct originates in the perceptions of indi-
viduals and is shaped over time by their interactions with 
one another, exposure to common environment, etc. This 
construct is based on a pooled constrained model of emer-
gence (Kozlowski & Klein, 2000) and, thus, a consensus 
composition measurement model. Stated alternatively, we 
expect similar levels of justice perceptions within teams. 

Therefore, within-unit agreement statistics will be used to 
help justify data aggregation. The following notation is used 
throughout the remainder of this article:

X = an observed score, typically measured on an interval 
scale of measurement,

S2
X
= the observed variance on X,

J = number items ranging from j = 1 to J,
K = number of lower-level units (e.g., team-members, 

raters) ranging from k = 1 to K,
N = number of higher-level units (e.g., teams, organiza-

tions) ranging from i = 1 to N,
M = the mean score on X for the lower-level units, 
Md = the median score on X for the lower-level units. 

Multilevel Theory: Origin, Structure, 
Function, and Measurement of Collective 
Constructs

In some instances, data aggregation is not necessary because 
the focal constructs are easily measured at the higher level. 
In these instances, the focal constructs have global unit prop-
erties which “originate and are manifest at the [higher] unit 
level” (p. 29; Kozlowski & Klein, 2000). These types of 
constructs are often driven by the structure or function of 
the higher-level unit (e.g., class size, class subject matter, 
experience of the teacher, age of the firm).

Alternatively, a researcher may be interested in a higher-
level construct that is a function of lower-level variables. 
These constructs are said to “emerge” from the interactions 
of the lower-level units with one another and their unique 
environments. Kozlowski and Klein (2000) suggested that 
emergent constructs may be conceptualized as falling on 
a continuum ranging from isomorphic composition to dis-
continuous compilation. Composition models presume that 
the lower-level and higher-level constructs are the same 
(or very similar). In contrast, compilation models are used 
when the construct measured at a lower-level is believed to 
be functionally different from the aggregated, higher-order 
construct. Kozlowski and Klein’s framework of emergence 
and multilevel measurement models extend and integrate 
work by Chan, (1998), and Bliese, (2000). For our purposes, 
we can simply distinguish between consensus composition 
models and compilation models.

Consensus Composition Models In the current paper, we 
focus on a subset of composition models that Chan, (1998) 
referred to as consensus models. Consensus models are 
appropriate when the existence of the higher-level construct 
(e.g., justice climate) is said to be conditional on the lower-
level units (e.g., individuals) demonstrating sufficient agree-
ment in their scores (e.g., shared individual-level percep-
tions of justice may be aggregated to form team-level justice 
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climate). Stated alternatively, the higher-level construct orig-
inates at the lower-level (e.g., individual-level perceptions 
of one’s work environment) but is believed to emerge and 
function at the higher-level (e.g., team-level justice climate). 
In this instance, the higher-level construct is comprised of 
shared unit properties which “describe the characteristics 
that are common to – that is, shared by – the members of a 
[lower-level] unit” (p. 30; Kozlowski & Klein, 2000). Vari-
ations on this concept of consensus measurement models 
include Kozlowski & Klein’s (2000) convergent emergence 
model and their pooled constrained emergence model, as 
well as Bliese’s, (2000) fuzzy composition model. A critical 
aspect of using a consensus measurement model is the sta-
tistical demonstration of appropriate within-unit agreement 
prior to aggregating scores to the unit-level (Chan, 1998).

Compilation Models Compilation models are appropriate 
when the higher-level construct is a function of measure-
ments taken on lower-level units, but there is no assumption 
that the lower-level and higher-level constructs are isomor-
phic with one another. For example, Chan’s, (1998) addi-
tive models are those in which the higher-level construct is 
a sum or an average of lower-level ratings. These models 
are relatively straightforward because unlike the previously 
described models, neither the within-group agreement nor 
the within-group variance across lower-level units are theo-
retically important when aggregating data from the lower-
level to the higher-level. Additive models are similar to 
Kozlowski & Klein’s (2000) pooled unconstrained model 
of emergence and are most relevant when the higher-order 
construct is a composite of inputs from the lower-level 
units, but there is no assumption that the lower-level units 
are homogeneous in their scores. As an example, Kozlowski 
& Klein (2000) offered team performance — it is possible 
that in many teams, not all team members would contribute 
equally to the final team product.

Minimum/maximum models of emergence represent a 
notable shift in the direction of compilation measurement 
models (Kozlowski & Klein, 2000). Such models assign to 
the entire higher-level unit a score that is either the minimum 
or the maximum of the lower-level scores. For example, one 
disagreeable team member may be sufficient to engender 
team conflict. To test such a hypothesis, personality data 
from the individual level could be aggregated to the team 
level and correlated with team-level conflict. In this case, the 
lowest level of trait agreeableness within each team would 
be assigned to the team.

Chan’s (1998) dispersion model is aligned with 
Kozlowski & Klein’s (2000) variance model of emergence. 
In these models, the meaning of the higher-level construct 
is derived from the degree of heterogeneity, or variance, 
among scores taken at the lower level. In other words, the 

focal construct is operationalized as the degree of within-
group variance or dispersion of scores. For example, the 
strength of team climate may be an important predictor of 
team-level outcomes, over and above the level of team cli-
mate. In this instance, the variability or standard deviation 
within teams could be computed and included in models that 
also contained climate level (i.e., team means; Colquitt et al., 
2002; Schneider et al., 2002).

The patterned emergence model is anchored at the com-
pilation end of the composition-compilation spectrum. This 
model “incorporates the assumption that emergence may 
manifest itself as different forms, and it views nonuniform 
patterns of dispersion as meaningful substantive phenom-
ena” (Kozlowski & Klein, 2000; p. 73). Examples of pat-
terned emergence could include compatible mental models, 
group diversity, and/or aspects of social networks (e.g., net-
work centrality; network density).

Finally, Chan’s (1998) process model differs from the 
models discussed up until this point in that it is focused on 
measuring processes that unfold over time rather than meas-
uring static constructs at a single point in time. For exam-
ple, a researcher might seek to measure how the climate 
of an organization emerges or how conflict among a team 
increases or decreases as time goes on. To maximize clarity 
and reproducibility of research findings, our first principle 
echoes the sentiments of Kozlowski and Klein (2000; p. 28):

Recommendation #1 Researchers should be explicit about 
the theory of their focal constructs. When higher-level 
constructs are based on the aggregation of data collected 
at lower levels, researchers should include a discussion of 
(a) where the constructs originate (i.e., level of origin), (b) 
the proposed process by which the lower-level data cohere 
into a new higher-level construct (i.e., process of emergence; 
the structure of the construct), and (c) the function of the 
higher-level construct (i.e., how the higher-level construct 
influences other variables).

Recommendation #2 When higher-level constructs are 
being estimated using the aggregation of data collected at 
lower levels, researchers should explicitly identify the mul-
tilevel measurement model (e.g., pooled constrained emer-
gence model) used to connect their multilevel theory to their 
aggregation of data (i.e., what model was used to translate 
lower-level data into higher-level scores).

Multilevel Measurement: ICC(1)

One of the most commonly reported statistics in multilevel 
research is the ICC(1), which refers to the intraclass corre-
lation coefficient computed using the variance components 
obtained from a one-way random effects ANOVA (Bliese, 
2000). It is simply an ANOVA where the clustering variable 
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(e.g., work teams) is used to partition the variance in scores 
obtained on lower-level units (e.g., team members’ per-
ceptions of justice and fairness) into between-groups and 
within-groups components. Given that multilevel designs 
are rarely balanced (i.e., higher-level units typically have 
different numbers of lower-level units nested within them), 
researchers are encouraged to estimate the variance com-
ponents for the ICC(1) using a simple, “null” random coef-
ficient regression model (see Hofmann, Griffin & Gavin, 
2000; Raudenbush & Bryk, 2002; Shiverdecker & LeBreton, 
2019). For a two-level model, the variance components from 
the null ANOVA model can be used to estimate ICC(1):

where, t
00

 denotes the between-groups variance and �2 
denotes the within-groups variance. Within the context of 
multilevel research, the ICC(1) value is interpreted as an 
effect size – the proportion of variability in the lower-level 
scores (e.g., individuals’ perceptions of justice) that may 
be attributed to the nesting of those lower-level units (e.g., 
individuals) in the higher-level units (e.g., teams).

Returning to our justice climate example, if a researcher 
wishes to argue that team members’ individual-level per-
ceptions of justice are shaped by their environments (i.e., 
nesting of team members within different teams where each 
team has a different team leader), then it would be important 
to demonstrate that some of the variance in team member 
ratings varied across teams. Obtaining an ICC(1) = 0.10 indi-
cates that 10% of the variance in individual-level percep-
tions may be attributed to the nesting of individuals within 
teams (i.e., between-groups variance); and thus, 90% of 
the variance in individual-level justice perceptions resides 
within teams. In sum, the ICC(1) is a critical statistic for 
demonstrating the non-independence of lower-level units 
due to their nesting within higher-level units. As LeBreton 
& Senter (2008) noted, even relatively small/modest ICC(1) 
values (e.g., 0.05) may underlie important emergent phe-
nomena. Consequently, when lower-level data are going to 
be aggregated to a higher-level, the estimation and reporting 
of ICC(1) values provides important information about the 
extent to which lower-level scores differ across higher-level 
units.

Recommendation #3 Researchers should include estimates 
of ICC(1) for all lower-level variables that are being aggre-
gated to higher-levels.

Multilevel Measurement: ICC(2)

In addition, when the multilevel measurement model 
involves aggregating scores by computing unit-level means 

(1)ICC(1) =
t
00

t
00
+ �2

(e.g., justice climate computed as the mean of the team 
members’ scores), it is useful to have information about 
how reliably these means discriminate between groups. This 
information is furnished by the ICC(2), which is sometimes 
denoted the ICC(k) or ICC(1,k). This statistic is also com-
puted the variance components from the one-way random 
effects ANOVA:

As Bliese (2000) noted, the ICC(2) is roughly equivalent 
to applying the Spearman-Brown prophecy equation to the 
ICC(1):

where, K denotes the number of lower-level units (e.g., indi-
viduals) nested in a particular higher-level unit (e.g., team). 
Bliese (1998) found that Eq. (3) yields estimates of ICC(2) 
that asymptotically approach those of Eq. (2) as the number 
of lower-level units nested in higher-level units increases 
(e.g., as team size increases). The ICC(2) may be interpreted 
as the stability or the reliability of group means. Thus, it pro-
vides researchers with a sense of how effective group mean 
scores are at distinguishing between the different groups. As 
Bliese et al. (2018) noted, “Substantial ICC(2) values are 
not necessary for identifying emergent group-level effects 
(but they help).” (p. 8). We also see value in estimating and 
reporting ICC(2), as consistent reporting of these statistics 
will also improve the clarity and transparency of research:

Recommendation #4 Estimates of ICC(2) should be 
reported when unit-level means are computed to serve as 
aggregate-level variables.

When the number of individuals nested within each team 
is identical (e.g., each team has exactly 5 team members) 
then Eq. (2) yields identical estimates of ICC(2) for each 
group. Bliese (2000) noted that in this instance, “the ICC(2) 
is equivalent to the overall sample-mean reliability estimate 
�̂  , discussed by Bryk & Raudenbush (1992, p. 63)” (p. 356). 
However, in many instances, k will differ across higher-level 
units (e.g., different team sizes). In such instances, an exami-
nation of Eq. (2) reveals that larger teams will have larger 
estimates of ICC(2) and smaller teams will have smaller esti-
mates. This finding makes both mathematical and intuitive 
sense. All things being equal, group means computed using 
larger group sizes will be more consistent/reliable compared 
to group means computing using smaller group sizes.

When group sizes are unbalanced, researchers should 
clarify the estimation and interpretation of ICC(2) values. 
To illustrate, assume we collected data from 70 teams with 

(2)ICC(2) =
t
00

t
00
+ �2∕K

(3)ICC(2) =
K(ICC(1))

1 + (K − 1)ICC(1)
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sizes ranging from 3 to 13 team members. We could report 
ICC(2) values in a number of different ways. For example, 
we might compute multiple estimates of ICC(2) using the 
minimum (k = 3) and maximum (k = 13) sample sizes. These 
estimates would convey how the range of group sample sizes 
impacted the precision with which we were able to estimate 
group means. Alternatively, we might use Eq. (2) to compute 
a single estimate of ICC(2), where we set k equal to some 
specific value (e.g., minimum, maximum, mean, median, or 
mode of the group sample sizes). This would convey differ-
ent information to our audience, conditional on the specific 
group size used in Eq. (2). For example, a researcher might 
use the minimum group size to estimate ICC(2), and note 
that this is a very conservative estimate of mean reliability 
because most means were computed using larger sample 
sizes. Finally, we could estimate 70 different ICC(2) val-
ues, one for each group. We could then report the mean or 
median of these ICC(2) values. In order to improve the clar-
ity and transparency of multilevel research:

Recommendation #5 When data are not perfectly balanced, 
researchers should clarify how they computed ICC(2) and 
how the estimate(s) should be interpreted. Specifically, 
researchers should explain how they selected a number to 
represent group sizes (k) (e.g., mean, median, minimum, 
or maximum group size). At a minimum, we recommend 
using Eq. (2) to estimate ICC(2) and setting k equal to the 
median group size.

Multilevel Measurement: Within‑Group Agreement 
Using  rWG &  rWG(J)

Compilation models do not require evidence of within-group 
consensus (agreement) prior to aggregating data to the group-
level. Thus, for researchers aggregating data using compila-
tion models, an estimate of ICC(1) might be all that is needed 
when aggregating data. If an additive model is being used, 
then ICC(2) might also be computed and reported. In con-
trast, researchers using consensus composition models to 
aggregate data must provide additional evidence of within-
group agreement prior to aggregating data. Unfortunately, 
ICC(1) and ICC(2) do not provide sufficient evidence of 
within-group agreement (Krasikova & LeBreton, 2019; 
LeBreton, Burgess, Kaiser, Atchley & James, 2003; LeB-
reton & Senter, 2008; Wittmer & LeBreton, 2021). Instead, 
consensus models require that researchers compute estimates 
of within-unit agreement to justify data aggregation (Chan, 
1998; Kozlowski & Klein, 2000). Evidence of within-unit 
agreement is often based on statistics such as rWG (James 
et al., 1984, 1993), aWG (agreement within-groups; Brown 
& Hauenstein, 2005), AD (average deviation; Burke et al., 
1999), or SD (standard deviation; Schmidt & Hunter, 1989). 
Prior research has demonstrated that these different measures 

of within-unit agreement are often highly correlated with one 
another (Brown & Hauenstein, 2005; Burke et al., 1999; Rob-
erson et al., 2007). This convergence across statistics is not 
necessarily surprising, as each statistic is based (in part) on 
the deviations of scores from lower-level units (e.g., individu-
als) from the unit-level (e.g., team) mean or median (LeB-
reton & Senter, 2008). Given the convergent conclusions 
reached using these different statistics, we decided to focus 
our attention on the most common estimates of within-group 
agreement – rWG and rWG(J).

rWG

The most commonly used estimates of within-group agree-
ment are James et al.’s (1984, 1993) single-item rWG and 
multi-item rWG(J). If multiple judges (e.g., team members) 
evaluate a single target (e.g., team environment) on a single 
item, then agreement may be assessed using rWG. When mul-
tiple judges evaluate a single target using J parallel items, 
then within-unit agreement may be assessed using rWG(J).

The rWG statistic defines agreement in terms of the pro-
portional reduction in error variance. The assumption of 
rWG is that each higher-level unit (e.g., team) has a single 
“true score” on the focal construct (e.g., justice). Thus, any 
observed variance within units (e.g., individual-level per-
ceptions of justice in the workplace) may be attributed to 
random error variance.1

Agreement is estimated using rWG by comparing the 
observed variance within each group to the variance that 
would be expected if judges’ scores were completely due to 
random error (James et al., 1984):

where, �2

E
 is the estimate of the error variance for the null 

distribution of scores that would be expected when the 
lower-level units scores were due solely to random respond-
ing (i.e., judges or employees responded completely at ran-
dom to this single item). One definition of random error 
is a uniform, rectangular, or equal probability distribution. 
However, James et al. (1984) noted that in some cases, the 
uniform distribution may not be appropriate. Specifically, 
James et al. noted that response biases in the form of “sys-
tematic errors or bias” (p. 89) may impact how researchers 
opt to define random responding. For example, if a leni-
ency bias is present among the lower-level units, then, even 

(4)rWG = 1 −
S2
X

�2

E

1 Newman and Sin (2020) introduced alternative estimates of within-
group agreement that allow for each group to have a specific true 
score and for each individual within the group to also have a separate 
true score. The reader is encouraged to review Newman and Sin for 
more information about these new statistics.
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judges responding randomly would tend to assign scores 
from the higher end of the distribution. James et al. (1984) 
recommended that researchers use the extant literature to 
guide their selection of null distributions.

If multiple possible null distributions are identified, 
researchers should compute multiple versions of rWG using 
different error variance estimates corresponding to the dif-
ferent null distributions. LeBreton & Senter (2008) reiter-
ated the importance of evaluating multiple null distributions. 
They also provided researchers with point-estimates for the 
random response error variance that might be expected for 
different distributions (e.g., slightly skewed, triangular) 
using a range of different Likert-type scales (e.g., 5-point, 
7-point). Meyer et al. (2014) noted that despite recommen-
dations to use multiple null distributions, most researchers 
have relied on the uniform or rectangular null. These authors 
suggested that this reliance may be due, in part, to a lack of 
guidance regarding best practices for identifying and select-
ing alternative distributions. To address this lack of guid-
ance, the Meyer et al. (2014) paper introduced a framework 
to help researchers identify, a priori, what biases are most 
likely to be impacting their data.

Guidelines for Selecting Null Distributions

The framework Meyer et al. (2014) offered emphasizes how 
target-irrelevant, nonrandom forces can engender certain 
response biases based on features of the environment. And, 
in turn, these response biases should impact how we define 
random responding, and thus how we select null distribu-
tions for estimating rWG. Target-irrelevant, nonrandom forces 
are factors that systematically influence ratings, independ-
ent of the target’s true standing on the construct. They can 
be thought of as situational cues that encourage individuals 
to adopt certain patterns of responding. It is important to 
note that these forces act upon individuals. However, when 
individuals are nested within a common group, it is likely 
that they will be exposed to similar external forces. The 
Meyer et al. framework lays out specific examples of target-
irrelevant nonrandom forces that can be categorized into a 
“5Ws and an H” framework (i.e., who, what, when, where, 
why, and how).

Briefly, researchers must consider who is providing the 
ratings and how characteristics of raters might impact the 
distributions of responses. For example, individuals with 
above-average levels of agreeableness are more likely to pro-
vide lenient ratings (Bernardin, Cooke & Villanova, 2000). 
In such an instance, researchers might opt to use a skewed 
null distribution because of the presence of a leniency bias 
in the ratings.

Next, researchers must consider what is being rated. 
Meyer et al., (2014) pointed to evidence wherein individu-
als are more likely to select more socially desirable response 

options when self-reporting on affective variables, like anx-
iety. Here, researchers might opt to select a skewed or a 
slightly skewed null response distribution when calculating 
rWG.

Researchers must also consider when ratings are collected 
and other time-sensitive information. Meyer et al. noted that 
anchoring effects (i.e., tendencies to respond at extreme ends 
of a rating scale) are more likely when raters are under time 
pressure (Edland & Svenson, 1993; Pennington & Roese, 
2003). In such an instance, researchers might again opt to 
use a skewed null distribution when calculating rWG.

Next, researchers might consider whether response distri-
butions are affected by where rater responses are collected. 
This could involve whether ratings are collected in a lab 
environment or in a naturalistic setting, or even the broader 
cultural context in which ratings are provided. For exam-
ple, individuals belonging to collectivistic cultures are more 
likely to adopt a “modesty” bias (i.e., a tendency to diminish 
one’s own performance of individual characteristics) com-
pared to raters belonging to individualistic cultures. Error 
distributions could certainly be affected by the context in 
which ratings are provided and should be considered when 
selecting a null response distribution.

Meyer et al., (2014) suggested that the most important 
question researchers should consider when selecting a null 
distribution is why ratings are being collected. They pointed 
to cases in which raters were more likely to respond with 
a leniency bias when informed their ratings will be used 
to make important administrative decisions, whereas raters 
tend to respond with less of a leniency bias when told their 
ratings are being collected for research or developmental 
purposes only (Cleveland, Murphy & Williams, 1989; Mur-
phy Jako & Anhalt, 1993). Calculating rWG using data col-
lected for administrative/consequential purposes might ben-
efit from using a moderately skewed distribution, whereas 
data collected for less consequential purposes might use a 
slightly skewed or a uniform distribution.

Finally, researchers ought to consider how ratings are col-
lected. For example, socially desirable responses are more 
likely when ratings are not anonymous, whereas ratings 
provided anonymously are less likely to group toward the 
more favorable ends of a response scale (London, Smither 
& Adsit, 1997). Researchers aggregating non-anonymous 
ratings might consider using a skewed null distribution. The 
5 Ws and an H framework proposed by Meyer et al., 2014 
provides a useful starting point for considering and identify-
ing target-irrelevant nonrandom forces that may affect error 
distributions under a range of conditions.

Once potential response biases have been identified and 
random response distributions have been specified, research-
ers will then need to obtain and report the specific point-
estimates they used for �2

E
 when computing estimates of rWG. 

LeBreton & Senter (2008) and Krasikova & LeBreton (2019) 
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provided point-estimates for different Likert-type response 
scales (5-point, 6-point, 7-point, etc.) across different distri-
butions (uniform, slightly skewed, moderately skewed, etc.). 
Alternatively, researchers may locally compute estimates of 
�2

E
 corresponding to distributions not included LeBreton & 

Senter (2008) or Krasikova & LeBreton (2012).
rWG is estimated as the proportional reduction in error by 

comparing the observed variance (i.e., S2
X
 ) to the variance 

that would be expected if judges scores were due to solely 
to random measurement error (i.e., random responding; �2

E
 ) 

and subtracting this ratio from 1. If all judges provide the 
same rating of the target (perfect consensus or agreement), 
the observed variance among judges is zero, and rWG = 1.0. 
If the judges have a total lack of agreement, the observed 
variance will asymptotically approach the error variance 
obtained from the null distribution (as the number of judges 
increases), leading rWG to approach 0.0. Thus, rWG is inter-
preted as the proportional reduction in error variance. It is 
important to note that unless values are bounded (due to 
being outside the 0 to 1 range), the different values of rWG 
will be directly proportional to each other; it is only the 
absolute values that will change based upon changing the 
null distribution.

rWG(J)

The rWG family of indices has been extended to situations 
where a single target is rated by multiple raters on J items, 
rWG(J) (James et al., 1984, 1993):

where, rWG(J) furnishes an estimate of agreement for judges 
mean scores on J essentially parallel items and S2

Xj
 refers to 

the mean of the observed item variances for the J items. 
Once the appropriate estimates of �2

E
 have been obtained, 

rWG(J) is computed using Eq. (5) and is again interpreted as 
the proportion reduction in error variance. To maximize 
clarity and reproducibility:

Recommendation #6 Researchers using rWG or rWG(J) should 
a) clearly identify the null distributions used to obtain the 
estimates of �2

E
 , b) include explanations for why those dis-

tributions were judged to be most appropriate, including a 
discussion of response biases (if relevant), and c) explain 
where/how the point-estimates for the error variances (i.e., 
�2

E
 ) were obtained (pulled from prior studies, based on tabled 

values, computed locally for the current study, etc.).

(5)rWG(J) =

J

[
1 −

S2
Xj

�2

E

]

J

[
1 −

S2
Xj

�2

E

]
+

[
S2
Xj

�2

E

]

Multilevel Measurement: Additional Estimates 
of Within‑Group Agreement

Despite all estimates generally “pointing in the same direc-
tion,” LeBreton & Senter (2008) suggested some researchers 
may wish to consider reporting multiple measures of within-
group agreement. Specifically, the authors noted that it could 
be helpful to include one estimate of agreement scaled on 
the 0 to 1 metric (e.g., rWG/rWG(J), aWG/aWG(J)) and one scaled 
in the metric of the original items (e.g., ADM, SD). Using 
multiple measures is not required for data aggregation, but it 
may help readers have a better understanding of the pattern 
and magnitude of within-group agreement. Below we briefly 
summarize alternatives to rWG and rWG(J).

aWG and aWG(J)

Brown & Hausenstein (2005) introduced a new measure 
of within-unit agreement denoted aWG. They noted that the 
rWG indices are scale dependent, in that the lower bound of 
any rWG index will be conditional on the number of scale 
anchors. They also noted that rWG is directly influenced by 
the number of judges, potentially complicating interpreta-
tions. To address these concerns, they introduced a new esti-
mate of within-group agreement:

where S2
mpv|M refers to the maximum possible observed vari-

ance in X, given the observed sample mean for X, which may 
be estimated and inserted the previous equation yielding:

This statistic assumes a range of values from -1 (perfect 
disagreement) to 0 (perfect lack of agreement) to + 1 per-
fect agreement. They noted that “dissensus is more heavily 
penalized in the estimate of agreement if it occurs at the 
extremes of the rating scale.” They also offer a multi-item 
variant:

Average Deviation

Burke et al. (1999) proposed the average deviation (AD) 
index to estimate within-unit agreement. This measure, like 
rWG, was developed for situations where multiple judges 
(i.e., lower-level units) are providing scores on a single tar-
get (i.e., a higher-level unit). One of the advantages of the 

(6)aWG = 1 −
2 ∗ S2

X

S2
mpv|M

(7)aWG = 1 −
2 ∗ S2

X

[H + L) ∗ M −M2 − H ∗ L)] ∗ [k∕(k − 1)]

(8)aWG(J) =
ΣaWG(j)

J
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AD metric is that it estimates agreement in the metric of the 
original scale of the item. This provides an intuitive and 
practical metric for evaluating within-unit consensus. The 
AD index for a single item evaluated by multiple judges may 
be estimated using deviations from either the judges’ means 
(i.e., ADM) or medians (i.e., ADMd):

or

These statistics also have multi-item analogs that are esti-
mated similarly to aWG(J):

and

Compared to the previous estimates of within-unit agree-
ment, the AD statistics inform researchers about the (aver-
age) lack of agreement within-units. Higher scores indicate 
greater lack of agreement, whereas scores of 0 indicate per-
fect agreement.

Standard Deviation

Researchers may also estimate within-unit agreement by cal-
culating a simple within-unit standard deviation (SDX) and 
the standard error of the mean (Schmidt & Hunter, 1989). 
SDX is an intuitively appealing statistic to use when the form 
of emergence is moored to a compilation dispersion meas-
urement model (LeBreton & Senter, 2008). For example, 
researchers have tested how climate strength may be related 
to important outcomes and have estimated climate strength 
using the within-unit SDX (Colquitt et al., 2002; Schneider 
et al., 2002).

Interpreting & Reporting Results: Criteria 
for Aggregation

Several authors have advanced different criteria or thresh-
olds that should be met prior to aggregating lower-level data 
to higher levels. For example, LeBreton & Senter (2008) 
suggested that criteria used to make decisions about data 
aggregation should be considered within the broader context 
of the project. They suggested that the levels of within-unit 

(9)ADM(j) =

∑K

k=1
��Xk −M��
K

(10)ADMd(j) =

∑K

k=1
��Xk −Md��
K

(11)ADM(J) =

∑J

j=1
ADM(j)

J

(12)ADMd(J) =

∑J

j=1
ADMd(j)

J

agreement required for data aggregation may vary as a func-
tion of the purpose of the project (e.g., basic research study 
on climate vs. administrative decision about hiring a new 
CEO using ratings from structured panel interviews). Simi-
larly, expectations for within-group agreement may vary as 
a function of the quality of measures used in a study (e.g., 
lower levels of agreement might be acceptable for new 
measures in early stages of development versus higher lev-
els of agreement that might be expected using gold standard 
measures). Finally, the types of measurement models used 
to aggregate data and the specific use of the aggregated data 
will also influence the criteria or thresholds used to justify 
data aggregation.

Once researchers have considered the context, meas-
ures, and purpose of aggregation, they should articulate the 
specific statistical criteria used to guide data aggregation 
decisions. For example, Table 3 in LeBreton and Senter 
introduced a taxonomy of practical effect sizes for use with 
the rWG/aWG families of statistics. Additionally, criteria may 
include the use of other cutoffs for agreement or cutoffs 
moored to statistical significance testing (cf. Bliese & Hal-
verson, 2002; Burke et al., 2017; Cohen et al., 2001; Dunlap 
et al., 2003; LeBreton & Senter, 2008; Smith-Crowe et al., 
2014; Smith-Crowe et al., 2012; Woehr et al., 2015). Most 
importantly, researchers must clearly articulate the criteria 
used to guide decisions about data aggregation. These crite-
ria should be anchored to appropriate theories of emergence 
and corresponding multilevel level measurement models. 
Guidance on specific criteria for different indices of agree-
ment are available in previously cited works.

To illustrate, consider two research teams, both studying 
similar constructs, that invoked different theories of emer-
gence requiring different measurement models and thus, dif-
ferent criteria (or lack thereof) to justify data aggregation. 
Schneider et al. (2002) sought to examine how the level and 
strength of customer service climate predicted customer sat-
isfaction. In this study, they aggregated all data to the level 
of bank branches. To compute climate level, they relied on 
a direct consensus measurement model. They noted, “The 
direct consensus model is the one most frequently discussed 
in research on organizational climate because shared per-
ceptual agreement at the individual level of analysis has 
been seen as functionally isomorphic to the construct at the 
organizational level” (p. 221). Thus, to justify data aggre-
gation using a consensus model, their aggregation criteria 
consisted of rWG(J) > 0.70. To compute climate strength, they 
used a dispersion/variance compilation model and simply 
estimated the standard deviation within each bank branch.

Similarly, Colquitt et al. (2002) sought to examine how 
the level and strength of justice climate at the team level was 
related to team-level performance and team-level absentee-
ism. To compute climate strength, these authors estimated 
the within-team standard deviation. Contrasting the study 
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by Schneider et al., Colquitt and his colleagues did not use 
a consensus model of aggregation to compute climate level. 
Instead, these authors used a simple additive (pooled uncon-
strained) measurement model. This model did not require 
within-team agreement prior to aggregating scores to the 
team-level. Instead, these authors noted “A consensus model 
was not appropriate for this study because within-team vari-
ance in justice perceptions was substantively meaningful. 
Indeed, within-team variance was necessary for testing the 
climate strength hypotheses, as a lack of variance would 
indicate a restriction of range in that independent variable” 
(p.99).

Thus, two sets of climate researchers developed similar 
hypotheses about how climate level and climate strength 
would relate to important outcomes. However, each set of 
researchers invoked different theoretical explanations for 
how climate would emerge in their specific contexts. These 
different explanations for emergence necessitated different 
multilevel measurement models with different data aggre-
gation criteria. One could debate which approach is more 
appropriate given the research question — such a debate 
is beyond the scope of the current paper. However, what is 
not debatable is the transparency and clarity that both sets 
of authors provided in stating their theory of the collective 
constructs (Recommendation #1), the measurement model 
for their collective constructs (Recommendation #2), and the 
criteria used to justify data aggregation (Recommendation 

#7). To enhance the clarity and transparency of future mul-
tilevel research:

Recommendation #7 When setting criteria to guide data 
aggregation decisions, researchers should (a) consider the 
quality of their measures, the form of measurement model, 
and the importance of agreement within the context of their 
research question, and (b) explicitly state the criteria used to 
guide aggregation decisions (e.g., minimum cut-off values 
based on statistical or practical significance). See Table 1 
for examples of research questions and constructs that might 
warrant different levels of agreement.

Interpreting & Reporting Results: Treatment 
of Anomalies and Inconsistencies Anomalies

Given the recommendation to compute multiple agreement 
indices, it is possible that researchers may obtain anomalous 
estimates of within-group agreement. Specifically, it is pos-
sible that estimates of rWG/rWG(J) could fall outside the range 
of normal values (i.e., less than 0 or greater than 1). In such 
instances, researchers should be transparent about obtaining 
such values and how they handled such values. LeBreton and 
colleagues (LeBreton & Senter, 2008; LeBreton et al., 2005) 
have discussed potential causes of out-of-bound estimates 
and provided suggestions for how to handle out-of-bound 
estimates.

Table 1  Examples of constructs, measures, and circumstances that warrant different levels of agreement

Level of agreement Interpretation Illustrative examples Explanation

.00 to .30 Lack of agreement N/A If calculating interrater agreement, there are few 
(if any) instances where you would reasonably 
expect and accept a lack of agreement between 
raters

.31 to .50 Weak agreement Climate strength Ideally, we would expect a group to have some 
degree of a climate. However, climate does not 
have to be strong. Weak climates exist when 
variability exists in the way that group  
members perceive the climate, so strong agree-
ment may not be necessary

.51 to .70 Moderate agreement Group cohesion captured using a  
relatively new measure

We might expect some degree of agreement for 
a construct like group cohesion, but if group 
cohesion is assessed using a newly designed 
measure that has not been subjected to  
substantial psychometric evaluation, we might 
not expect strong agreement

.71 to .90 Strong agreement Group cohesion captured using a  
well-established, validated measure

Again, we might expect some degree of  
agreement for a construct like group cohesion. 
If group cohesion is measured using a well-
established and validated measure, we might 
expect stronger agreement

.91 to 1.00 Very strong agreement Panel interview ratings for critical decisions 
(e.g., decisions about hiring, promotion,  
firing, tenure)

Agreement between raters on constructs used 
to make important decisions should ideally be 
very strong
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Inconsistencies

In addition, given the large number of within-group agree-
ment estimates, it is possible that evidence supporting 
data aggregation could be inconsistent across groups. For 
example, consider a researcher who sets a cut-score for data 
aggregation as rWG(J) > 0.50. This researcher finds that 65 
groups had rWG(J) values exceeding this threshold, but 5 
groups had values falling below this threshold. How is the 
researcher to proceed? Following the recommendations laid 
out by LeBreton & Senter (2008), when mixed patterns of 
agreement are found in the data, researchers should (a) test 
their hypotheses using only the groups that met criteria for 
aggregation, (b) rerun the analyses using all groups (i.e., 
those meeting and those not meeting aggregation thresh-
olds), and (c) report any substantive differences in find-
ings. LeBreton and Senter also suggested that researchers 
could create a dummy variable to distinguish groups with 
and without sufficient agreement and use this variable as an 
ad hoc moderator when testing hypotheses. Irrespective of 
which solution is adopted, it is important that researchers 
clearly explain how they treated groups that lacked sufficient 
agreement to justify data aggregation. To maximize trans-
parency and reproducibility:

Recommendation #8 Researchers obtaining separate esti-
mates of agreement for each higher-level unit should clarify 
(a) whether any estimates of agreement fell out-of-bounds, 
and if so, how those estimates were handled, and (b) whether 
any higher-level units lacked sufficient agreement based 
upon predetermined standards of agreement and how those 
units were handled.

Reporting Results: Patterns of Within‑Unit 
Agreement

It is important to remember that within-unit agreement sta-
tistics are typically estimated separately for each unit. In 
addition, when using rWG/rWG(J), the number of estimates 
will further increase if multiple null response distributions 
are used. Take for example a researcher who has collected 
data on justice perceptions from individuals nested in 70 
teams. If this researcher wishes to estimate rWG(J) using a 
uniform (rectangular null distribution) and a slightly skewed 
null distribution, then this researcher will need to compute 
140 estimates of rWG(J). This researcher might also decide 
to include estimates of agreement computed using ADM(J). 
Thus, a total of 210 estimates of within-unit agreement will 
be computed for this study. When many estimates of agree-
ment are being computed, it is important that researchers 
provide a description of agreement that conveys the general 
pattern of within-unit agreement (LeBreton & Senter, 2008). 

Specifically, to enhance the transparency and reproducibility 
of research:

Recommendation #9 Researchers obtaining separate esti-
mates of agreement for each of their high-level units (using 
rWG, aWG, ADMn, etc.) should provide information about the 
overall patterns of agreement across their data. This may 
include an online supplemental file containing (a) descrip-
tive statistics for the estimates of agreement (mean, SD, min, 
max), (b) a histogram to aid in visualizing the distribution of 
estimates, and/or (c) a description of the proportion of units 
that had estimates of agreement above relevant data aggrega-
tion thresholds (e.g., 80% of teams had rWG(J) values greater 
than .80 and 97% had values greater than .70).

Reporting Results: Simplified Summaries Using 
 rWGp/rWGp(J)

If researchers justify data aggregation using rWG/rWG(J), 
aWG/aWG(J), and/or ADM/ADM(J), they will be computing a 
large number of statistics (i.e., one estimate for each group). 
If these statistics are used, researchers should provide infor-
mation about the general patterns of agreement (Recom-
mendation #9) and include information about statistical 
anomalies or inconsistencies (Recommendation #8). One 
way to simplify the reporting of agreement and reduce the 
likelihood of spurious anomalies and/or inconsistencies is to 
estimate within-unit agreement using rWGp/rWGp(J).

rWGp &  rWGp(J)

The theoretical range of the rWG and rWG(J) spans from 0, 
which indicates no reduction over random responding (i.e., 
complete lack of agreement) to 1, which indicates the total 
elimination of random responding (i.e., perfect agreement). 
However, as Lindell et al. (1999) noted, it is possible to 
obtain out-of-range values for these statistics (i.e., less than 
0 or greater than 1). When these out-of-range values are 
small in magnitude, researchers typically assume these val-
ues were engendered by sampling error (i.e., small number 
of judges within units) and simply reset these values to 0 
(LeBreton et al., 2005). However, variations on rWG and 
rWG(J) have been introduced, in part, to help address issues 
of out-of-range values (Lindell & Brandt, 1997; Lindell 
et al., 1999).

More recently, LeBreton et al. (2005) noted that one rea-
son for obtaining out-of-range values could be the incor-
rect use of rWG or rWG(J) in situations where the target of 
measurement (i.e., higher-level units) could have multiple 
“true scores” (e.g., a team leader may have multiple true 
scores on a measure of trust, conditional on whether the data 
are obtained from members of their in-group or out-group; 
an organization may not have a single justice climate, but 
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rather multiple justice climates, conditional on the nesting 
of individuals within different teams). To address this situa-
tion, LeBreton et al. (2005) introduced an additional variant 
of rWG computed using the pooled within-groups variance 
rather than the traditional observed group variance:

where S2
X.�

 denotes the residual variance in judges scores 
after removing the “treatment effect” associated with being 
nested within a particular sub-group (e.g., the effect of being 
the in-group versus the out-group; the effect of being nested 
within a particular team). A multi-item version was sug-
gested by LeBreton & Senter (2008):

whereas the traditional rWG and rWG(J) statistics provide sepa-
rate estimates of agreement for each higher-level unit (e.g., 
team), using a pooled within-groups variance results in a 
single, global measure of within-unit agreement. LeBreton 
et al. (2005) and LeBreton & Senter (2008) noted in order 
to compute rWGp and rWGp(J)

 , it is critical that researchers 
identify the different groups a priori.

Although the examples provided by these authors empha-
sized sub-groups within existing groups (i.e., in-group vs. 
out-group), these statistics are equally applicable to nearly 
all data aggregation situations in the organizational sciences. 
For example, let us assume we have 70 work teams, each 
containing 3 to 13 team members. Each person is asked to 
rate their perceptions of justice on a 7-point Likert type scale 
within a measure containing J = 5 items. We decide to esti-
mate agreement assuming a uniform error distribution and 
a slightly skewed distribution. If we approached this sce-
nario from a traditional perspective, we would compute 140 
estimates of rWG(J) (2 estimates for each of the 70 groups). 
We would then be tasked with organizing and interpreting 
these 140 values to determine whether sufficient agreement 
existed to warrant data aggregation.

Following Recommendation #9, we might report descrip-
tive statistics for agreement estimates, including a graphical 
representation (e.g., histogram) of the distribution of agree-
ment estimates, and summarizing the proportion of estimates 
that exceeded some a priori threshold or cutoff. An alterna-
tive or complementary approach would be to estimate rWGp(J)

 , 
which would return only two global estimates of agreement, 
one for each of the proposed error distributions. We would 
then compare these global estimates to our criteria for data 

(13)rWGp
= 1 −

S2
X.�

�2

E

(14)rWGp(J)
=

J

[
1 −

S2
X.�j

�2

E

]

J

[
1 −

S2
X.�j

�2

E

]
+

[
S2
X.�j

�2

E

]

aggregation (e.g.,  rWGp(J) > 0.50). To be clear, we are sug-
gesting researchers treat each of the 50 groups as different 
subgroups within the organization, with each subgroup hav-
ing a different true score on the focal construct (i.e., justice 
climate).

To maximize clarity and transparency:

Recommendation #10 Researchers are encouraged to 
include estimates of rWGp/rWGp(J)

 as indicators of overall/
omnibus/global within-unit agreement.

Review of Data Aggregation in Multilevel 
Research

To get a sense of the clarity with which data aggregation 
decisions, especially those based on consensus composition 
measurement models, are described in the organizational 
sciences, we conducted a circumscribed literature review. 
Specifically, we identified empirical articles published in 
the five-year period between 2017 and 2021 in six promi-
nent organizational journals (Journal of Applied Psychology, 
Academy of Management Journal, Journal of Management, 
Personnel Psychology, Journal of Business and Psychology, 
and Journal of Organizational Behavior). We conducted 
our search using Google Scholar and included papers that 
used the keyword rWG in their paper as well as at least one 
of the following keywords: multilevel, ICC, ICC1, ICC2, 
data aggregat*, ad, compilation model, consensus model, or 
multilevel model. This search returned 99 articles. Of these 
99, 8 were non-empirical review papers and were excluded 
from the analysis, resulting in a sample of 91 papers. Table 2 
provides a summary of our recommendations and Table 3 a 
summary of our findings.

Multilevel Theory: Domain of Composite Constructs

Of the 91 papers we reviewed, three major content areas 
emerged. Most papers were focused on issues related to 
leadership (n = 24), work teams (n = 43), or organizational 
culture and climate (n = 10). Aggregated constructs within 
each paper were generally relevant to these three content 
domains, with leadership papers including aggregating con-
structs such as leader moral humility, ethical leadership, 
and abusive supervision (for example) where data were 
aggregated from the lower-level unit (followers, subordi-
nates) to the higher-level unit (leaders, supervisors, CEOs). 
Papers focused on work teams and team functioning tended 
to aggregate constructs such as team cohesion, teamwork 
behavior, or team conflict, where aggregation was from 
the individual-level to the shared team-level. Papers about 
organizational culture and climate emphasized constructs 
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such as emotional culture, distributive justice climate, and 
safety climate, where aggregation was from the individual-
level to the group- or organizational-level. The remaining 14 
papers focused on a range of constructs including machiavel-
lianism and narcissism (aggregated from the within person-
level to the between person-level and performance (again, 
aggregated from the within person-level to the between 
person-level). In the section that follows, we review these 
papers vis-à-vis the principles for data aggregation identified 
in the first part of our paper.

Recommendations #1 and #2: Theory 
of the Constructs and Measurement Model

Researchers tended to include descriptions of the theoretical 
underpinnings of the constructs and described how those 
constructs originated at a lower-level and were aggregated 
to a higher level. Given that the search criteria included 
“rWG”, one could infer that all of the papers included at 
least one aggregated construct that was based on a consensus 

measurement model. However, only 26 out of the 91 papers 
(approximately 29% of papers) explicitly identified the type 
of multilevel measurement model used to aggregate data. 
Of these 26, all specified the use of a composition model.

We examined these findings within the context of the 
focal constructs studied in these papers. As a reminder, 
our four broad construct domains included work teams (43 
papers), leadership (24 papers), organizational culture and 
climate (10 papers), and miscellaneous (14 papers). We 
found that papers focused on teams or culture/climate were 
more likely to include an explicit description of their meas-
urement models, with 33% of the teams papers and 50% of 
the culture/climate papers including reference to a specific 
measurement model compared to only 17% of leadership 
papers and 8% of miscellaneous papers. Although we can 
infer from the papers that they included at least one aggre-
gated construct based on a consensus model, it is unclear 
which specific model they used, and it is also unclear the 
extent to which levels of agreement were considered impor-
tant when aggregating constructs to the higher level. In sum, 

Table 2  Data Aggregation Checklist: best practice recommendations for data aggregation in multilevel research

1. Multilevel Theory – The Theory of Collective Constructs: For each higher-level construct that is an aggregate of lower-level data, researchers 
should include a description of:

a. The Level of Origin: Explain where the construct is believed to originate
b. The Process of Emergence: Explain the process by which lower-level data cohere into a higher-level construct
c. The Function of Collective Constructs: Explain how the higher-level construct is believed to impact and shape other variables in the local 

nomological network
2. Multilevel Theory – Measurement Models of Collective Constructs: For each higher-level construct that is based on the aggregation of lower-

level data, researchers should describe the specific multilevel (pooled constrained emergence; minimum/maximum, etc.) measurement model 
used to translate lower-level data into higher-level data

3. Multilevel Measurement – ICC(1): For each higher-level variable researchers should estimate and interpret ICC(1) values
4. Multilevel Measurement – ICC(2): For each higher-level variable that is computed as the mean estimated from lower-level scores, researchers 

should estimate and interpret ICC(2) values
5. Multilevel Measurement – ICC(2) for Unbalanced Designs: When data are not perfectly balanced, researchers should clarify how they com-

puted ICC(2) and how the estimate(s) should be interpreted. Specifically, researchers should explain how they selected a number to represent 
group sizes (k) (e.g., mean, median, minimum, or maximum group size). At a minimum, we recommend estimating ICC(2) setting k equal to 
the median group size

6. Multilevel Measurement –  rWG/rWG(J). Researchers using  rWG and/or  rWG(J) to justify data aggregation should a) clearly identify the null error 
distributions used to obtain estimates of �2

E
 , b) include an explanation for why those distribuitons were judged to be appropriate, and c) clarify 

where/how the point-estimates of �2

E
 were obtained

7. Interpreting & Reporting Results – Criteria for Data Aggregation. Researchers should include an explicit description of the criteria (or lack 
thereof) used to guide data aggregation decisions (cutoffs for agreement; significance testing, etc.). Researchers are encouraged to consider the 
quality of their measures (newly developed vs. gold standard), the form of their multilevel measurement model (consensus versus compilation), 
and the context/purpose of data aggregation when finalizing data aggregation criteria (climate study vs. structured panel interviews)

8. Interpreting & Reporting Results –Anomalies & Inconsistencies. Researches should clarify a) whether any estimates of agreement fell out-of-
bounds (e.g.,  rWG/rWG(J) values < 0 or > 1) and b) whether any higher-level units lacked sufficient agreement to justify aggregation (i.e., did any 
higher-level units have estimates of agreement that fell short of the criteria set out in #7)

9. Interpreting & Reporting Results – Patterns of Local Agreement. When separate estimates of agreement are computed for each higher-level 
unit, researchers should provide a summary of results that conveys the overall pattern of agreement across the higher-level units. At a mini-
mum, researchers should include basic descriptive statistics (e.g., mean and SD of  rWG/rWG(J)). Researchers are also encouraged to include a 
visual summary (e.g., histograms) and a summary of how many higher-level units had agreement values falling above different data aggrega-
tion thresholds. This information may be included in a footnote or supplement

10. Interpreting & Reporting Results – Global Estimates of Agreement Using  rWG(p). As an addition or alternative to Recommendation #9, 
researchers are encouraged to provide an estimate of the overall or global within-unit agreement using  rWGp/rWGp(J)
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the fact that less than one-third of these papers explain to 
the reader the specific multilevel model used is certainly 
problematic and limits readers’ and reviewers’ sense of how 
important within-unit agreement was for data aggregation.

Recommendation #3 & #4: Estimating ICC(1) & ICC(2)

Out of the 91 papers we examined, 89 (approximately 98%) 
reported at least one ICC value, with 80 papers reporting 
both ICC(1) and ICC(2), 6 reporting only ICC(1), and 3 
reporting only ICC(2). Finally, 86 papers reported both 
ICC(1) and rWG/rWG(J). When examining these findings in the 
context of the content domain of the papers, we found that 
approximately 93% of teams papers reported both ICC(1) 
and ICC(2) compared to 80% of organizational culture and 
climate papers, 79% of leadership papers, and 77% of mis-
cellaneous papers. With nearly all papers reporting at least 
one ICC value, and the majority of papers reporting both 
ICC(1) and ICC(2) values, scholars are already helping to 
ensure the clarity and transparency of research.

Recommendation #5: Estimating ICC(2) 
for Unbalanced Designs

As a reminder, 83 out of the 91 papers calculated and 
reported ICC(2). Most papers reported having an unbalanced 
design (i.e., their group sizes differed), but only four explic-
itly addressed that the sizes of the groups in their sample 
differed when describing how they calculated ICC(2). Each 
of these four papers described calculating ICC(2) using the 
mean size of their groups. This presents a serious limita-
tion to the reproducibility of findings in papers using data 
aggregation statistics for multilevel analysis. Rarely are 
group sizes exactly the same, so it is important for scholars 
to note whether mean or median group sizes were used to 
calculate ICC(2), whether ICC(2) values were computed for 
each group and then averaged, or if other decisions were 
made when calculating ICC(2) for groups of varying sizes.

Recommendation #6: Estimating  rWG/rWG(J)

Approximately 25% of papers (23 out of 91) reported the 
null distribution(s) used to calculate rWG or rWG(J). Specifi-
cally, 12 articles reported using just one null distribution, 
and 11 reported using more than one null distribution. The 
most common null distributions were the uniform null (18 
out of 23 papers), followed by the slightly skewed null (9 
papers), heavily skewed null (2 papers) and the triangular 
null (1 paper).

We also examined reporting patterns separately for the 
different construct domains. Overall, articles where the 
aggregated variables reflected leadership or team-related 
constructs were more likely to include information about 

null distributions, with 30% of leadership-related papers 
and 33% of team-related papers including information 
about the null. In contrast, only 20% of the climate/cul-
ture-related papers reported their null, and none of the 
miscellaneous papers reported information about the null 
distribution. The use of the uniform null versus the slightly 
skewed null, heavily skewed null, and triangular null dis-
tribution was not specific to the construct domain of the 
papers, with a relatively even distribution of null distribu-
tion types used across domains.

Overall, we found that 75% of the articles included in 
our review failed to explain how rWG or rWG(J) were com-
puted. This pattern of non-reporting was nearly identi-
cal to the results of a larger review conducted by Meyer 
et al. (2014). Those authors found that information about 
null distributions was omitted from 75.9% of the esti-
mates included in their review. These authors also found 
that when null distributions were reported, 69.8% of the 
estimates were computed using a uniform or rectangular 
null distribution. Overall, the omission of this informa-
tion is extremely problematic, as it results in ambiguous 
conclusions about how statistics were estimated and, thus, 
whether the correct statistics were ultimately included in 
the paper or not. Looking ahead, we see the clear articula-
tion of the null distributions used to calculate rWG as a key 
factor for scholars being able to reproduce and replicate 
multilevel research.

Recommendation #7: Criteria for Justifying Data 
Aggregation

Only 21 of the 91 papers (23%) identified a specific 
rWG/rWG(J) cutoff value used to make decisions about the 
appropriateness of data aggregation. Most of these (16 
out of 21) used a cutoff value of 0.70, citing LeBreton & 
Senter (2008) or James et al. (1984). One challenge we 
encountered when coding these papers was that, often-
times, only one to two sentences were provided to discuss 
the calculation of rWG statistics. In many cases, the discus-
sion of the calculation of the rWG statistic was included 
in the same sentence as the discussion of the cutoff value 
used with only a single citation provided at the end of 
the sentence. This was problematic in that we were often 
unsure whether authors were citing certain papers as a 
reference to rWG, to the rWG cutoff statistic, or to other 
information such as the calculation of ICC values. For 
example, we found it interesting that 4 out of 21 papers 
cited James (1982) when discussing the rWG cutoff statistic 
used because this paper was published two years before the 
rWG statistic was introduced by James et al. (1984). This 
issue highlights the need for greater clarity in reporting 
data aggregation in multilevel research.
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Recommendation # 8: Treatment of Inconsistencies 
and Anomalies

Nine of the papers discussed the general pattern of responses 
with respect to a cutoff, for example by explaining the pro-
portion of rWG/rWG(J) values that fell above or below the 
cutoff value. Of the 21 papers that reported a cutoff value, 
2 were explicit about (a) the number or percentage of 
groups that fell above or below the selected cutoff and (b) 
how groups that did not meet the cutoff value were treated 
(i.e., whether they were kept or excluded from analyses). In 
addition, six papers discussed the number or percentage of 
groups with  rWG/rWG(J) values below cutoffs, but those papers 
failed to explain how those groups were handled (i.e., were 
they retained or excluded from analyses).

With respect to out-of-range values, only nine papers 
explicitly noted whether there were estimates that fell out-
side the range of acceptable values with six reporting out-of-
range values and three reporting no out-of-range values. Of 
the six papers with out-of-range values, only two described 
how these out-of-range values were treated. One paper opted 
to exclude groups with out-of-range values, and the other 
opted to retain those groups.

In sum, only nine of 91 articles mentioned the possibility 
of out-of-range values, six indicated problematic estimates 
of agreement were detected, and two discussed how they 
handled the groups with these estimates. One major issue 
with the exclusion of this information is that the reproduc-
ibility of research may be limited if researchers attempting 
to replicate findings make different decisions about the treat-
ment of out-of-range values and/or the treatment of groups 
with such estimates. This is another key area in which the 
transparency of multilevel research could be enhanced 
through the inclusion of additional descriptive information 
about the calculation of agreement statistics.

Recommendations #9: Patterns of Agreement

Of the 91 papers that estimated rWG or rWG(J), only 59 
included information about the mean values, 21 included 
information about median values, and eight included infor-
mation about both the mean and median values. In addition, 
only five papers included information about the range of 
values. None of the papers included a histogram depicting 
the distribution of rWG values.

Recommendation #10: Global Estimates 
of Within‑Unit Agreement Using  rWGp

None of the 91 papers in our literature review actually cal-
culated rWGp. This is unfortunate because rWGp provides a 
concise summary of within-unit agreement for data contain-
ing more than one higher-level unit — which, by definition, 

represents all data used in multilevel research. LeBreton 
et al. (2005) introduced rWGp within the broader context of 
how to handle out-of-range rWG values. They noted that one 
reason that a researcher could obtain out-of-range values was 
due to misspecification of multilevel data structure. They 
illustrated this issue using an example from the leader-mem-
ber exchange literature. They noted that groups of employees 
nested within different leaders might contain multiple sub-
groups of employees — some employees might be members 
of the “in-group” and some members of the “out-group.” 
In this instance, the target of assessment has multiple “true 
scores,” conditional on group membership. To address this 
issue, LeBreton et al. recommended estimating agreement 
using the pooled within-groups estimate of variance rather 
than the observed variance. Basically, rWGp residualized the 
observed variance for any between-group mean differences.

Although the in-group/out-group example was an effec-
tive illustration for some scholars, LeBreton et al. recognized 
that rWGp had much broader applications. Specifically, rWGp 
may be applied to any situation where group membership 
can be defined a priori. Beyond simple groups and teams, 
LeBreton et al. suggested a priori defined groups might 
include “functional departments, job classifications, race, 
gender, educational level, marital status, geographic divi-
sions, and hierarchical level” (p. 137). Whereas rWG provides 
a local estimate of agreement for each specific unit (e.g., 
team) using the local estimate of the within-group variance, 
rWGp provides a global estimate of agreement across all 
higher-level units using a global estimate of within-group 
variance (i.e., pooled within-groups variance).

State of the Science: Transparency in Data 
Aggregation

In general, we found that articles included discussions of the 
theory of collective constructs (Recommendation #1) and 
included estimates of ICC(1) and ICC(2) (Recommenda-
tions # 3 & #4). However, several areas exist for improved 
reporting practices (e.g., Recommendations #2, #5, #6, #8, 
#9, #10). We now turn to several tools that we believe may 
help to further improve the clarity and transparency of data 
aggregation in multilevel research.

Tools for Enhanced Clarity, Transparency, & 
Reproducibility

We propose that the recommendations in Table 2 could be 
used as a Data Aggregation Checklist. We are optimistic that 
this checklist, when used in conjunction with other impor-
tant resources (cf. Kozlowski & Klein, 2000; Meyer et al., 
2014; Woehr et al., 2015), should lead to greater clarity and 
transparency in multilevel research. This checklist is offered 
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as a general template to help guide multilevel researchers 
(and those tasked with reviewing multilevel studies). Using 
these recommendations, we developed a data aggregation 
package (WGA: Within-Group Agreement & Aggregation) 
available in R. We hope this package also contributes to 
greater clarity and transparency in multilevel research. We 
have included a brief tutorial on using WGA as an online 
supplemental file.

Conclusion

The proliferation of the use of multilevel modeling in organi-
zational research necessitates greater structure and consist-
ency in reporting relevant statistics related to the aggregation 
of data across levels. Multilevel researchers frequently rely 
on estimates of rWG, ICC(1), and ICC(2) to justify decisions 
to aggregate data from a lower-level to a higher-level. The 
goal of this paper was to discuss general principles to guide 
data aggregation decisions and to provide recommenda-
tions for those principles that may be adopted to improve 
the clarity, transparency, and reproducibility of future mul-
tilevel research. The principles and resulting Data Aggre-
gation Checklist, while not exhaustive, do provide a basic 
framework for improving the consistency in how multilevel 
scholars address data aggregation issues.
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1 Introduction 

This is an introduction to how R can be used to perform multilevel analyses typical to 

organizational researchers. Multilevel analyses are applied to data that have some form of a 

nested structure. For instance, individuals may be nested within workgroups, or repeated 

measures may be nested within individuals, or firms may provide several years of data in what is 

referred to as panel data. Nested structures are often accompanied by some form of non-

independence. In work settings, individuals in the same workgroup typically display some 

similarity with respect to performance or they provide similar responses to questions about 

aspects of the work environment. Likewise, in repeated measures data, individuals or firms 

usually display a high degree of similarity in responses over time. Non-independence may be 

considered either a nuisance variable or something to be substantively understood but working 

with nested data requires tools to deal with non-independence. 

  The term “multilevel analysis” is used to describe a set of analyses also referred to as 

random coefficient models, random effects, and mixed-effects models (see Bryk & Raudenbush, 

1992; Clark & Linzer, 2014; Kreft & De leeuw, 1998; Pinheiro & Bates, 2000; Raudenbush & 

Bryk, 2002; Snijders & Bosker, 1999). Mixed-effects models (the term primarily used in this 

document) are not without limitations (e.g., Clark & Linzer, 2014), but are generally well-suited 

for dealing with non-independence (Bliese, Schepker, Essman & Ployhart, 2020).  Prior to the 

widespread use of mixed-effects models, analysts used a variety of techniques to analyze data 

with nested structures and many of these techniques such as the econometric fixed-effect model 

are still widely used. In organizational research, mixed-effects models are often augmented by 

tools designed to quantify within-group agreement and group-mean reliability and the 

multilevel package contains many functions designed around testing within-group 

agreement and reliability. 

This document is designed to cover a broad range of tools and approaches for analyzing 

multilevel data. Having worked for over two decades with both R and with multilevel data from 

numerous contexts, I routinely leverage different approaches and different packages depending 

upon the specific circumstances. Therefore, my goal in writing this document is to show how R 

can cover a wide range of inter-related topics related to multilevel analyses including: 

• Data aggregation and merging for multilevel analyses 

• Within-group agreement and reliability 

• Contextual and basic econometric fixed-effect OLS models 

• Covariance theorem decomposition of correlations 

• Random Group Resampling 

• Mixed Effects Models for nested group data 

• Variants of Mixed Effects Models for Repeated Measures Data  

Some of the basic analyses can conducted using R’s base packages, but many of the analyses 

use functions in the multilevel package. As a broad overview, the multilevel package 

provides (a) functions for estimating within-group agreement and reliability indices, (b) 

functions for manipulating multilevel and longitudinal (panel) data, (c) simulations for 
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estimating power and generating multilevel data, and (d) miscellaneous functions for estimating 

reliability and performing simple calculations and data transformations. The multilevel 

package also contains several datasets to illustrate concepts. 

The other library that is frequently used is the non-linear and linear mixed-effects (nlme) 

model package, (Pinheiro & Bates, 2000). The nlme package provides functions to estimate a 

variety of models for both data nested in groups and for repeated measures data collected over 

time (growth models). Functions in the nlme package have remarkable flexibility and can 

estimate a variety of alternative statistical models. In some cases, the lme4 package developed 

by Doug Bates after the nlme package provides additional flexibility, so some functions from 

the lme4 package are also detailed. I tend to use lme4 when dealing with dichotomous 

dependent variables, or when data are partially or fully crossed, or when I want to generate an 

interaction plot (many more recent plotting packages were designed to work with lme4 rather 

than nlme). 

2 Reading data from files 

Before detailing multilevel analyses, I provide a short section on reading in data. There are 

numerous options for reading in data, so this section is in no way exhaustive. I provide what has 

been a simple and reliable way to import external files into dataframes. 

In almost all cases working with research partners either in industry or academia, I have found 

that EXCEL files are a common platform particularly since EXCEL can read comma-delimited 

(csv) files. One additional advantage to EXCEL is that it is easy to quickly scan the data file for 

potential problems. I tend to avoid bringing in columns containing large amounts of text, and I 

often add an additional row under the header row with new R-friendly names (some research 

partners provide column headers the length of a small novel).  

2.1.1 Reading data directly from EXCEL (Windows and MAC) 

2.1.1.1 Windows 

Consider the following data and notice how it has been highlighted and copied into the 

Window’s clipboard (Ctrl-C): 
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Once the file is in the Windows “clipboard”, the following command reads the data into R: 

 
> cohesion<-read.table(file="clipboard",sep="\t",header=T) 

 

An even simpler variation is to use: 

 
> cohesion<-read.delim(file="clipboard") 

 

The read.delim function is variant of read.table that assumes the data are tab-delimited 

with a header. I have found that this simple approach covers about 95% of all my data entry 

needs to include importing either csv or EXCEL files with tens of thousands of observations. 

2.1.1.2 MAC 

If using a MAC, the basic ideas are the same, but the clipboard is accessed differently using 

pipe. 

 
> cohesion<-read.delim(pipe("pbpaste")) 

 

2.1.2 Reading external csv files with file.choose (Windows and MAC) 

In cases where datasets are too large to read into EXCEL using the file.choose() 

function with read.csv or other read.table functions helps having to specify the path as 

in: 
 

 >cohesion<-read.csv(file.choose()) 
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Using file.choose() opens the graphic user interface (gui) so one can select the file 

using a mouse or other device.  This option is particularly useful when data are stored in complex 

network file structures. 

2.1.3 Writing R files to EXCEL (Windows and MAC) 

2.1.3.1 Windows 

Because the "clipboard" option also works with write.table it is also a useful way to 

export the results of data analyses to EXCEL or other programs.  For instance, if we create a 

correlation matrix from the cohesion data set, we can export this correlation table directly to 

EXCEL. 

 
> CORMAT<-cor(cohesion[,3:7],use="pairwise.complete.obs") 

> CORMAT 

          COH01     COH02     COH03     COH04     COH05 

COH01 1.0000000 0.7329843 0.6730782 0.4788431 0.4485426 

COH02 0.7329843 1.0000000 0.5414305 0.6608190 0.3955316 

COH03 0.6730782 0.5414305 1.0000000 0.7491526 0.7901837 

COH04 0.4788431 0.6608190 0.7491526 1.0000000 0.9036961 

COH05 0.4485426 0.3955316 0.7901837 0.9036961 1.0000000 

 

> write.table(CORMAT,file="clipboard",sep="\t",col.names=NA) 

 

Going to EXCEL and issuing the Windows "paste" command (or Ctrl-V) will insert the 

matrix into the EXCEL worksheet.  Note the somewhat counter-intuitive use of 

col.names=NA in this example. This command does not mean omit the column names 

(achieved using col.names=F); instead the command puts an extra blank in the first row of 

the column names to line up the column names with the correct columns.  Alternatively, one can 

use the option row.names=F to omit the row numbers. 

 

Written objects may be too large for the default memory limit of the Window’s clipboard.  

For instance, writing the full bh1996 dataset from the multilevel package into the 

clipboard results in the following error (truncated): 

 
> library(multilevel) 

> data(b1996)  #Bring data from the library to the workspace 

> write.table(bh1996,file="clipboard",sep="\t",col.names=NA) 

Warning message: 

In write.table(x, file, nrow(x),... as.integer(quote),  : 

  clipboard buffer is full and output lost 

   

To increase the size of the clipboard to 1.5MG (or any other arbitrary size), the 

"clipboard" option can be modified as follows:  "clipboard-1500".  The options 

surrounding the use of the clipboard are specific to various operating systems and may 

change with different versions of R so it will be worth periodically referring to the help files. 

2.1.3.2 MAC 

If using a MAC, the “clipboard” option does not work, so the command line would be: 
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> write.table(bh1996, file=pipe("pbcopy"),sep="\t",col.names=NA) 
 

Unlike Windows, the pipe option does not appear to need to be resized to accommodate large 

files. 

 

2.1.4 The foreign package and SPSS files 

The foreign package contains functions to import SPSS, SAS, Stata and minitab files. Help 

files are available for different formats.  Below is a command to bring in an SPSS file as a 

dataframe and numbers (e.g., 4) instead of the number’s value label (e.g., “agree”). 

  
> library(foreign) 

> help(read.spss)     #look at the documentation on read.spss 

> cohesion<-read.spss(file.choose(),use.value.labels=F, to.data.frame=T) 

> cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1  1044B     1ST     4     5     5     5     5 

2  1044B     1ST     3    NA     5     5     5 

3  1044B     1ST     2     3     3     3     3 

4  1044B     2ND     3     4     3     4     4 

5  1044B     2ND     4     4     3     4     4 

6  1044B     2ND     3     3     2     2     1 

7  1044C     1ST     3     3     3     3     3 

8  1044C     1ST     3     1     4     3     4 

9  1044C     2ND     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2 

11 1044C     2ND     1     1     1     3     3 

2.1.5 Checking your dataframes with str and summary 

With small data sets it is easy to verify that the data has been read in correctly.  Often, 

however, one will be working with large data sets that are difficult to visual verify.  

Consequently, functions such as str (structure) and summary provide easy ways to examine 

dataframes. 
 
> str(cohesion) 

`data.frame':   11 obs. of  7 variables: 

$ UNIT   : Factor w/ 2 levels "1044B","1044C": 1 1 1 1 1 1 2 2 2 2 ... 

 $ PLATOON: Factor w/ 2 levels "1ST","2ND": 1 1 1 2 2 2 1 1 2 2 ... 

 $ COH01  : int  4 3 2 3 4 3 3 3 3 2 ... 

 $ COH02  : int  5 NA 3 4 4 3 3 1 3 2 ... 

 $ COH03  : int  5 5 3 3 3 2 3 4 3 2 ... 

 $ COH04  : int  5 5 3 4 4 2 3 3 3 3 ... 

 $ COH05  : int  5 5 3 4 4 1 3 4 3 2 ... 

 

> summary(cohesion) 

    UNIT   PLATOON     COH01           COH02          COH03       

 1044B:6   1ST:5   Min.   :1.000   Min.   :1.00   Min.   :1.000   

 1044C:5   2ND:6   1st Qu.:2.500   1st Qu.:2.25   1st Qu.:2.500   

                   Median :3.000   Median :3.00   Median :3.000   

                   Mean   :2.818   Mean   :2.90   Mean   :3.091   

                   3rd Qu.:3.000   3rd Qu.:3.75   3rd Qu.:3.500   

                   Max.   :4.000   Max.   :5.00   Max.   :5.000   
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                                   NA's   :1.00                   

     COH04           COH05       

 Min.   :2.000   Min.   :1.000   

 1st Qu.:3.000   1st Qu.:3.000   

 Median :3.000   Median :3.000   

 Mean   :3.455   Mean   :3.364   

 3rd Qu.:4.000   3rd Qu.:4.000   

 Max.   :5.000   Max.   :5.000 

 

2.1.6 Loading data from packages 

One of the useful attributes of R is that the data used in the examples are almost always 

available to the user.  These data are associated with specific packages.  For instance, the 

multilevel package uses a variety of data files to illustrate specific functions.  To gain access to 

these data, one uses the data command:   

>data(package="multilevel") 

This command lists the data sets associated with the multilevel package, and the command 

>data(bh1996, package="multilevel") 

copies the bh1996 data set to the workspace making it possible to work with the bh1996 

dataframe. If a package has been attached by the library function its datasets are 

automatically included in the search, so that if 

>library(multilevel) 

has been run, then 

>data(bh1996) 

copies the data from the package to the workspace without specifying the package.  

2.2 A Brief Review of Matrix Brackets 

One of the unique aspects of R is the use of matrix brackets to access various parts of a 

dataframe. While the bracket notation may initially appear cumbersome, mastering the use of 

matrix brackets provides considerable control. 

The overall notation is [rows, columns]. So accessing rows 1,5,and 8 and columns 3 and 4 of 

the cohesion dataframe would be done like so: 
 

> cohesion[c(1,5,8),3:4] 

  COH01 COH02 

1     4     5 

5     4     4 

8     3     1 

Alternatively, we can specify the column names (this helps avoid picking the wrong columns). 
 

> cohesion[c(1,5,8),c("COH01","COH02")] 

  COH01 COH02 

1     4     5 

5     4     4 

8     3     1 
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It is often useful to pick specific rows that meet some criteria.  So, for example, we might want 

to pick rows that are from the 1ST PLATOON 
 

> cohesion[cohesion$PLATOON=="1ST",] 

   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1 1044B     1ST     4     5     5     5     5 

2 1044B     1ST     3    NA     5     5     5 

3 1044B     1ST     2     3     3     3     3 

7 1044C     1ST     3     3     3     3     3 

8 1044C     1ST     3     1     4     3     4 

Upon inspection, we might want to further refine our choice and exclude missing values.  We do 

this by adding another condition using AND operator "&" along with the NOT operator "!". 
 

> cohesion[cohesion$PLATOON=="1ST"&!is.na(cohesion$COH02),] 

   UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1 1044B     1ST     4     5     5     5     5 

3 1044B     1ST     2     3     3     3     3 

7 1044C     1ST     3     3     3     3     3 

8 1044C     1ST     3     1     4     3     4 

These simple examples should provide an idea of how to subset large datasets when conducting 

analyses. 

3 Multilevel Analyses 

The remainder of this document illustrates how R can be used in multilevel modeling 

beginning with several R functions particularly useful for preparing data for subsequent analyses  

3.1 Multilevel data manipulation functions 

3.1.1 The merge Function 

One of the key data manipulation tasks that must be accomplished prior to estimating several 

of the multilevel models (specifically contextual models and mixed-effects models) is that group-

level variables must be “assigned down” to the individual. To make a dataframe containing both 

individual and group-level variables, one typically begins with two separate dataframes. One 

dataframe contains individual-level data, and the other dataframe contains group-level data. 

Combining these two dataframes using a group identifying variable common to both produces a 

single dataframe containing both individual and group data.  In R, combining dataframes is 

accomplished using the merge function. 

  For instance, consider the cohesion data introduced when showing how to read data from 

external files.  The cohesion data is included as a multilevel data set, so we can use the data 

function to bring it from the multilevel package to the working environment 
 

>data(cohesion) 

>cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 

1  1044B     1ST     4     5     5     5     5 

2  1044B     1ST     3    NA     5     5     5 

3  1044B     1ST     2     3     3     3     3 

4  1044B     2ND     3     4     3     4     4 



Multilevel Models in R  11 

5  1044B     2ND     4     4     3     4     4 

6  1044B     2ND     3     3     2     2     1 

7  1044C     1ST     3     3     3     3     3 

8  1044C     1ST     3     1     4     3     4 

9  1044C     2ND     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2 

11 1044C     2ND     1     1     1     3     3 

Now assume that we have another dataframe with platoon sizes.  We can create this dataframe 

as follows: 

 
> group.size<-data.frame(UNIT=c("1044B","1044B","1044C","1044C"), 

PLATOON=c("1ST","2ND","1ST","2ND"),PSIZE=c(3,3,2,3)) 

> group.size  #look at the group.size dataframe 

   UNIT PLATOON PSIZE 

1 1044B     1ST     3 

2 1044B     2ND     3 

3 1044C     1ST     2 

4 1044C     2ND     3 

To create a single file (new.cohesion) that contains both individual and platoon 

information, use the merge command. 

 
> new.cohesion<-merge(cohesion,group.size,by=c("UNIT","PLATOON")) 

> new.cohesion 

     UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE 

1  1044B     1ST     4     5     5     5     5     3 

2  1044B     1ST     3    NA     5     5     5     3 

3  1044B     1ST     2     3     3     3     3     3 

4  1044B     2ND     3     4     3     4     4     3 

5  1044B     2ND     4     4     3     4     4     3 

6  1044B     2ND     3     3     2     2     1     3 

7  1044C     1ST     3     3     3     3     3     2 

8  1044C     1ST     3     1     4     3     4     2 

9  1044C     2ND     3     3     3     3     3     3 

10 1044C     2ND     2     2     2     3     2     3 

11 1044C     2ND     1     1     1     3     3     3 

Notice that every individual now has a value for PSIZE – a value that reflects the number of 

individuals in the platoon. 

In situations where there is a single unique group identifier, the by option can be simplified to 

include just one variable.  For instance, if the group-level data had reflected values for each 

UNIT instead of PLATOON nested in unit, the by option would simply read by="UNIT".  In 

the case of PLATOON, however, there are numerous platoons with the same name (1ST, 2ND), 

so unique platoons need to be identified within the nesting of the larger UNIT.  

3.1.2 The aggregate function 

In many cases in multilevel analyses, we create a group-level variable by mean aggregating 

individual responses. Consequently, the aggregate function is often used in combination with 

the merge function.  In our cohesion example, we can assign platoon means for the variables 

COH01 and COH02 back to the individuals using aggregate and merge. 
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The first step is to create a dataframe with group means using the aggregate function. The 

aggregate function has three key arguments: the first is matrix of variables to convert to 

group-level variables. Second is the grouping variable(s) as a list, and third is the function 

(mean, var, length, etc.) executed on the variables.  To calculate the means of COH01 and 

COH02 (columns 3 and 4 of the cohesion dataframe) issue the command:  

 
> TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT,cohesion$PLATOON),mean) 

> TEMP 

  Group.1 Group.2    COH01    COH02 

1   1044B     1ST 3.000000       NA 

2   1044C     1ST 3.000000 2.000000 

3   1044B     2ND 3.333333 3.666667 

4   1044C     2ND 2.000000 2.000000 

Notice that COH02 has an “NA” value for the mean.  The NA value occurs because there was 

a missing value in the individual-level file. If we decide to base the group mean on the non-

missing individual values from group members we can add the parameter na.rm=T, to 

designate that NA values should be removed prior to calculating the group mean. 

 
> TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT,cohesion$PLATOON),  

  mean,na.rm=T) 

> TEMP 

  Group.1 Group.2    COH01    COH02 

1   1044B     1ST 3.000000 4.000000 

2   1044C     1ST 3.000000 2.000000 

3   1044B     2ND 3.333333 3.666667 

4   1044C     2ND 2.000000 2.000000 

To merge the TEMP dataframe with the new.cohesion dataframe, we need to align the 

merge columns from both dataframes and control how the merge handles variables with the same 

names using the suffixes= c("",".G")option which leaves the variable name unchanged 

in the first dataframe but adds a .G suffix on the second dataframe.  
 
> final.cohesion<-merge(new.cohesion,TEMP,by.x=c("UNIT","PLATOON"), 

+ by.y=c("Group.1","Group.2"),suffixes=c("",".G")) 

> final.cohesion 

    UNIT PLATOON COH01 COH02 COH03 COH04 COH05 PSIZE  COH01.G  COH02.G 

1  1044B     1ST     4     5     5     5     5     3 3.000000 4.000000 

2  1044B     1ST     3    NA     5     5     5     3 3.000000 4.000000 

3  1044B     1ST     2     3     3     3     3     3 3.000000 4.000000 

4  1044B     2ND     3     4     3     4     4     3 3.333333 3.666667 

5  1044B     2ND     4     4     3     4     4     3 3.333333 3.666667 

6  1044B     2ND     3     3     2     2     1     3 3.333333 3.666667 

7  1044C     1ST     3     3     3     3     3     2 3.000000 2.000000 

8  1044C     1ST     3     1     4     3     4     2 3.000000 2.000000 

9  1044C     2ND     3     3     3     3     3     3 2.000000 2.000000 

10 1044C     2ND     2     2     2     3     2     3 2.000000 2.000000 

11 1044C     2ND     1     1     1     3     3     3 2.000000 2.000000 

The aggregate and merge functions provide tools necessary to manipulate data and 

prepare it for subsequent multilevel analyses.  Again, note that this illustration uses a relatively 

complex situation where there are two levels of nesting (Platoon within Unit).  In cases where 
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there is only one grouping variable (for example, UNIT) the commands for aggregate and 

merge contain the name of a single grouping variable.  For instance, 

>TEMP<-aggregate(cohesion[,3:4],list(cohesion$UNIT),mean,na.rm=T) 

3.2 Within-Group Agreement and Reliability 

The data used in this section are taken from Bliese, Halverson & Rothberg (2000) using the 

bhr2000 data set from the multilevel package. 
 

> data(bhr2000)#imports the data into the working environment 

> names(bhr2000) 

 [1] "GRP"   "AF06"  "AF07"  "AP12"  "AP17"  "AP33"  "AP34"  

 "AS14"  "AS15" "AS16"  "AS17"  "AS28"  "HRS"   "RELIG" 

> nrow(bhr2000) 

[1] 5400 

The names function identifies 14 variables.  The first one, GRP, is the group identifier. The 

variables in columns 2 through 12 are individual responses on 11 items that make up a leadership 

scale.  HRS represents individuals’ reports of work hours, and RELIG represents individuals’ 

reports of the degree to which religion is a useful coping mechanism.  The nrow command 

indicates that there are 5400 observations.  To find out how many groups there are we can use 

the length command in conjunction with the unique command 
 

> length(unique(bhr2000$GRP)) 

[1] 99 

There are several functions in the multilevel library that are useful for calculating and 

interpreting agreement indices.  These functions are rwg, rwg.j, rwg.sim, rwg.j.sim, 

rwg.j.lindell, awg, ad.m, ad.m.sim and rgr.agree.   The rwg function calculates 

the James, Demaree & Wolf (1984) rwg for single item measures; the rwg.j function calculates 

the James et al. (1984) rwg(j) for multi-item scales.  The rwg.j.lindell function calculates 

r*wg(j) (Lindell,  & Brandt, 1997; 1999).  The awg function calculates the awg agreement index 

proposed by Brown and Hauenstein (2005).  The ad.m function calculates average deviation 

(AD) values for the mean or median (Burke, Finkelstein & Dusig, 1999).   

A series of functions with “sim” in the name (rwg.sim, rwg.j.sim and ad.m.sim) can 

be used to simulate agreement values from a random null distributions to test for statistical 

significance agreement.  The simulation functions are based on work by Dunlap, Burke and 

Smith-Crowe (2003); Cohen, Doveh and Eich (2001) and Cohen, Doveh and Nuham-Shani 

(2009).  Finally, the rgr.agree function performs a Random Group Resampling (RGR) 

agreement test (see Bliese, et al., 2000). 

In addition to the agreement measures, there are two multilevel reliability measures, ICC1 

and ICC2 than can be used on ANOVA models. As Bliese (2000) and others (e.g., Kozlowski & 

Hattrup, 1992; Tinsley & Weiss, 1975) have noted, reliability measures such as the ICC(1) and 

ICC(2) are fundamentally different from agreement measures; nonetheless, they often provide 

complementary information to agreement measures, so this section illustrates the use of each of 

these functions using the dataframe bhr2000.  
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3.2.1 Agreement: rwg, rwg(j), and r*wg(j) 

Both the rwg and rwg.j functions are based upon the formulations described in James et al. 

(1984).  he functions require three pieces of information. The first piece is the variable of interest 

(x), the second is the grouping variable (grpid), and third is the expected random variance 

(ranvar).  The default estimate of ranvar is 2, which is the expected random variance based 

upon the rectangular distribution for a 5-point item (i.e., EU
2

) calculated using the formula 

ranvar=(A^2-1)/12 where A represents the number of response options associated with the scale 

anchors. See help(rwg), James et al., (1984), or Bliese et al., (2000) for details on selecting 

appropriate ranvar values. 

Below is an example using the rwg function to calculate agreement for the “coping using 

religion” item: 
 

> RWG.RELIG<-rwg(bhr2000$RELIG,bhr2000$GRP,ranvar=2) 

> RWG.RELIG[1:10,]  #examine first 10 rows of data 

   grpid        rwg gsize 

1      1 0.11046172    59 

2      2 0.26363636    45 

3      3 0.21818983    83 

4      4 0.31923077    26 

5      5 0.22064137    82 

6      6 0.41875000    16 

7      7 0.05882353    18 

8      8 0.38333333    21 

9      9 0.14838710    31 

10    10 0.13865546    35 

The function returns a dataframe with three columns. The first column contains the group 

names (grpid), the second column contains the 99 rwg values – one for each group.  The third 

column contains the group size.  To calculate the mean rwg value use the summary command: 
 

> summary(RWG.RELIG) 

     grpid             rwg             gsize        

 1      : 1       Min.   :0.0000   Min.   :  8.00   

 10     : 1       1st Qu.:0.1046   1st Qu.: 29.50   

 11     : 1       Median :0.1899   Median : 45.00   

 12     : 1       Mean   :0.1864   Mean   : 54.55   

 13     : 1       3rd Qu.:0.2630   3rd Qu.: 72.50   

 14     : 1       Max.   :0.4328   Max.   :188.00   

 (Other):93  

The summary command informs us that the average rwg value is .186 and the range is from 0 

to 0.433.  By convention, values at or above 0.70 are considered good agreement, so there 

appears to be low agreement among individuals within the same work groups with respect to 

coping using religion. The summary command also provides information about the group sizes. 

 To calculate rwg for work hours, the expected random variance (EV) needs to be changed 

from its default value of 2.  Work hours was asked using an 11-point item, so EV based on the 

rectangular distribution (EU
2

) is 10.00 (EU
2

=(112-1)/12) – see the rwg help file for details).  
 

> RWG.HRS<-rwg(bhr2000$HRS,bhr2000$GRP,ranvar=10.00) 

> mean(RWG.HRS[,2]) 
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[1] 0.7353417 

There is apparently much higher agreement about work hours within groups than there was 

about using religion as a coping mechanism in this sample.  By convention, this mean value 

would indicate agreement because rwg (and rwg(j)) values above .70 are considered to provide 

evidence of agreement. 

The use of the rwg.j function is nearly identical to the use of the rwg function except that 

the first argument to rwg.j is a matrix instead of a vector. In the matrix, each column 

represents one item in the multi-item scale, and each row represents an individual response. For 

instance, columns 2-12 in bhr2000 represent 11 items comprising a leadership scale. The items 

were assessed using 5-point response options (Strongly Disagree to Strongly Agree), so the 

expected random variance is (5^2-1)/12 or 2. 
 

> RWGJ.LEAD<-rwg.j(bhr2000[,2:12],bhr2000$GRP,ranvar=2) 

> summary(RWGJ.LEAD) 

     grpid            rwg.j            gsize        

 1      : 1       Min.   :0.7859   Min.   :  8.00   

 10     : 1       1st Qu.:0.8708   1st Qu.: 29.50   

 11     : 1       Median :0.8925   Median : 45.00   

 12     : 1       Mean   :0.8876   Mean   : 54.55   

 13     : 1       3rd Qu.:0.9088   3rd Qu.: 72.50   

 14     : 1       Max.   :0.9440   Max.   :188.00   

 (Other):93                                                                    

Note that Lindell and colleagues (Lindell & Brandt, 1997, 1999; 2000; Lindell, Brandt & 

Whitney, 1999) have raised concerns about the mathematical underpinnings of the rwg(j) formula.  

Specifically, they note that this formula is based upon the Spearman-Brown reliability estimator.  

Generalizability theory provides a basis to believe that reliability should increase as the number 

of measurements increase, so the Spearman-Brown formula is defensible for measures of 

reliability. In contrast, there may be no theoretical grounds to believe that generalizability theory 

applies to measures of agreement. That is, there may be no reason to believe that agreement 

should increase as the number of measurements on a scale increase (but also see LeBreton, 

James & Lindell, 2005). 

To address this potential concern with the rwg(j), Lindell and colleagues have proposed the 

r*wg(j). The r*wg(j) is calculated by substituting the average variance of the items in the scale into 

the numerator of rwg formula in lieu of using the rwg(j) formula (rwg = 1- Observed Group 

Variance/Expected Random Variance).  Note that Lindell and colleagues also recommend 

against truncating the Observed Group Variance value so that it matches the Expected Random 

Variance value in cases where the observed variance is larger than the expected variance. Their 

modification results r*wg(j) values being able to take on negative values. We can use the function 

rwg.j.lindell to estimate the r*wg(j) values for leadership. 
 

> RWGJ.LEAD.LIN<-rwg.j.lindell(bhr2000[,2:12], 

bhr2000$GRP,ranvar=2) 

> summary(RWGJ.LEAD.LIN) 

     grpid         rwg.lindell         gsize        

 1      : 1       Min.   :0.2502   Min.   :  8.00   

 10     : 1       1st Qu.:0.3799   1st Qu.: 29.50   

 11     : 1       Median :0.4300   Median : 45.00   

 12     : 1       Mean   :0.4289   Mean   : 54.55   
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 13     : 1       3rd Qu.:0.4753   3rd Qu.: 72.50   

 14     : 1       Max.   :0.6049   Max.   :188.00   

 (Other):93  

The average r*wg(j) value of .43 is considerably lower than the average rwg(j) value of .89 listed 

earlier. 

3.2.2 The awg Index 

Brown and Hauenstein (2005) argue that the rwg family of agreement indices have three major 

limitations: (1) the magnitude of the measures are dependent on sample size, (2) the scale used to 

assess the construct influences the magnitude of the measure, and (3) the use of the uniform null 

distribution is an invalid comparison upon which to base an estimate of agreement. To overcome 

these limitations, Brown and Hauenstein proposed the awg index as a multi-rater agreement 

measure analogous to Cohen’s kappa. The awg index is calculated using the awg function. 

The awg function has three arguments: x, grpid, and range. The x argument represents 

the item or scale upon which to calculate awg values. The awg function determines whether x is a 

vector (single item) or multiple item matrix (representing the items in a scale), and performs the 

awg calculation appropriate for the type of input. The second function, grpid, is a vector 

containing the group ids associated with the x argument. The third argument, range, represents 

the upper and lower limits of the response options. The range defaults to c(1,5) which 

represents a 5-point scale from (for instance) strongly disagree (1) to strongly agree (5). 

The code below illustrates the use of the awg function for the multi-item leadership scale. 
 

> AWG.LEAD<-awg(bhr2000[,2:12],bhr2000$GRP) 

> summary(AWG.LEAD) 

     grpid         a.wg            nitems      nraters        avg.grp.var     

 1      : 1   Min.   :0.2223   Min.   :11   Min.   :  8.00   Min.   :0.2787   

 10     : 1   1st Qu.:0.3654   1st Qu.:11   1st Qu.: 29.50   1st Qu.:0.4348   

 11     : 1   Median :0.4193   Median :11   Median : 45.00   Median :0.5166   

 12     : 1   Mean   :0.4125   Mean   :11   Mean   : 54.55   Mean   :0.5157   

 13     : 1   3rd Qu.:0.4635   3rd Qu.:11   3rd Qu.: 72.50   3rd Qu.:0.5692   

 14     : 1   Max.   :0.5781   Max.   :11   Max.   :188.00   Max.   :0.9144   

 (Other):93                                                                 

Notice that ratings of the awg tend to more similar in magnitude to the r*wg(j)  which likely 

reflects the facts that (a) large variances can result in negative ratings reflecting disagreement, 

and (b) the denominator for the measure is fundamentally based upon the idea of maximum 

possible variance (similarly to the r*wg(j)) rather than a uniform distribution. 

One final note is that Brown and Hauenstein (2005) contend that the class of rwg agreement 

indices should not be estimated in cases where group size (or number of raters) is less than the 

number of response options (scale anchors) associated with the items (A).  In this example, A is 

5 representing the scale anchors from strongly disagree to strongly agree.  In contrast, however, 

Brown and Hauenstein (2005) state that it is appropriate to estimate awg on the number of 

anchors minus 1. The reason why awg can be estimated on smaller groups is that awg (unlike rwg) 

uses a sample-based variance estimate in the denominator whereas rwg uses a population-based 

variance estimate (recall that the formula for the rectangular variance distribution is 

ranvar=(A^2-1)/12 which represents a population-based value (EU
2

)). In the example there is no 

issue with group size given that the smallest group has eight members.   
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3.2.3 Significance testing using rwg.sim and rwg.j.sim 

As noted in section 3.2.1, rwg and rwg(j) values at or above .70 are conventionally considered 

providing evidence of within-group agreement. A series of studies by Charnes and Schriesheim 

(1995); Cohen, Doveh and Eick (2001); Dunlap, Burke, and Smith-Crowe (2003) and Cohen, 

Doveh and Nahum-Shani (2009) lay the groundwork for establishing tests of statistical 

significance for rwg and rwg(j). The basic idea behind these simulations is to draw observations 

from a known null distribution (generally a uniform or rectangular null), and repeatedly estimate 

rwg or rwg(j).  Because the observations are drawn from a uniform random null, rwg or rwg(j) 

estimates in the simulation should be zero. Occasionally, however, the rwg or rwg(j) values will be 

larger than zero reflecting sampling variability associated with the specific attributes of the 

simulation. Repeatedly drawing random numbers and estimating rwg and rwg(j) provides a way to 

calculate expected null values and confidence intervals. 

The simulations conducted by Cohen et al., (2001) varied several factors, but the two factors 

found to be most important for the expected null values of the rwg(j) were (a) group size and (b) 

the number of items. Indeed, Cohen et al., (2001) found that the expected null rwg(j) values in the 

simulations differed considerably as group size and the number of items varied. These findings 

imply that the conventional value of .70 may be a reasonable cut-off value for significance with 

some configurations of group sizes and items but may not be reasonable for others. Thus, Cohen 

et al., (2001) recommended researchers simulate parameters based on the specific characteristics 

of the researchers' samples when determining whether rwg(j) values are significant. 

In 2003, Dunlap and colleagues estimated 95% confidence intervals for the single item rwg 

using the idea of simulating null distributions. Their work showed that the 95% confidence 

interval for the single item measure varied as a function of (a) group size and (b) the number of 

response options. In the case of 5 response options (e.g., strongly disagree, disagree, neither, 

agree, strongly agree), the 95% confidence interval estimate varied from 1.00 with a group of 3 

to 0.12 for a group of 150. That is, one would need an rwg estimate of 1.00 with groups of size 

three to be 95% certain the groups agreed more than chance levels, but with groups of size 150 

any value equal to or greater than 0.12 would represent significant agreement. 

The function rwg.sim provides a way to replicate the results presented by Dunlap and 

colleagues.  For instance, to estimate the 95% confidence interval for a group of size 10 on an 

item with 5 response options one would provide the following parameters to the rwg.sim 

function keeping in mind that the results from a separate run will not match these results exactly 

because no random seed was set: 
 

> RWG.OUT<-rwg.sim(gsize=10, nresp=5, nrep=10000) 

> summary(RWG.OUT) 

$rwg 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

 0.0000  0.0000  0.0000  0.1221  0.2167  0.8667  

 

$gsize 

[1] 10 

$nresp 

[1] 5 

$nitems 

[1] 1 

$rwg.95 
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[1] 0.5277778 

The results in the preceding example are based on 10,000 simulation runs.  In contrast, 

Dunlap et al., (2003) used 100,000 simulation runs.  Nonetheless, both Table 2 from Dunlap et 

al., (2003) and the example above suggest that 0.53 is the 95% confidence interval estimate for a 

group of size 10 with five response options.   

Because the estimation of  rwg in the simulations produces a limited number of possible 

responses, the typical methods for establishing confidence intervals (e.g., the generic function 

quantile) cannot be used.  Thus, the multilevel package provides a quantile method for 

the objects of class agree.sim created using rwg.sim. To obtain 90%, 95% and 99% 

confidence interval estimates (or any other values) one would issue the following command: 
 

> quantile(RWG.OUT,c(.90,.95,.99)) 

  quantile.values confint.estimate 

1            0.90        0.4222222 

2            0.95        0.5277778 

3            0.99        0.6666667 

Cohen et al. (2009) expanded upon the work of Dunlap et al., (2003) and the early work by 

Cohen et al. (2001) by demonstrating how confidence interval estimation could be applied to 

multiple item scales in the case of rwg(j) values. The function rwg.j.sim is based upon the 

work of Cohen et al., (2009) and simulates rwg(j) values from a uniform null distribution for user 

supplied values of (a) group size, (b) number of items in the scale, and (c) number of response 

options on the items. Users also provide the number of simulation runs (repetitions) upon which 

to base the estimates.  In most cases, the number of simulation runs will be 10,000 or more 

although the examples illustrated here will be limited to 1,000.   

The final optional argument to rwg.j.sim is itemcors.   If this argument is omitted, the 

simulated items used to comprise the scale are assumed to be independent (non-correlated).  If 

the argument is provided, the items comprising the scale are simulated to reflect a given 

correlational structure. Cohen et al., (2001) showed that results based on independent (non-

correlated) items were similar to results based on correlated items; nonetheless, the model with 

correlated items is more realistic and thereby preferable (see Cohen et al., 2009). 

For an example of using rwg.j.sim with non-correlated items, consider a case where a 

researcher was estimating the expected value and confidence intervals of rwg(j) on a sample where 

group size was 15 using a 7-item scale with 5 response options for the items (A=5).   The call to 

rwg.j.sim would be: 
 

> RWG.J.OUT<-rwg.j.sim(gsize=15,nitems=7,nresp=5,nrep=1000) 

 

> summary(RWG.J.OUT) 

$rwg.j 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

0.000000 0.000000 0.009447 0.161800 0.333900 0.713700  

$gsize 

[1] 15 

$nresp 

[1] 5 

$nitems 

[1] 7 

$rwg.j.95 
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[1] 0.5559117 

In this example, the upper expected 95% confidence interval is 0.56. This is lower than 0.70, 

and suggests that in this case the value of 0.70 might be too stringent. Based on this simulation, 

one might justifiably conclude that a value of 0.56 is evidence of significant agreement (p<.05).    

Using the simulation, one can show that as group size increases and the number of items 

increase, the criteria for what constitutes significant agreement decreases. 

To illustrate how significance testing of rwg(j) might be used in a realistic setting, we will 

examine whether group members agreed about three questions specific to mission importance in 

the lq2002 data set. These data were also analyzed in Cohen et al., 2009. We begin by 

estimating the mean rwg(j) for the 49 groups in the sample and obtaining a value of .58.  This 

value is below the .70 conventional criteria and suggests a lack of agreement.   

 
> RWG.J<-rwg.j(lq2002[,c("TSIG01","TSIG02","TSIG03")], 

  lq2002$COMPID,ranvar=2) 

> summary(RWG.J) 

     grpid        rwg.j            gsize       

 10     : 1   Min.   :0.0000   Min.   :10.00   

 13     : 1   1st Qu.:0.5099   1st Qu.:18.00   

 14     : 1   Median :0.6066   Median :30.00   

 15     : 1   Mean   :0.5847   Mean   :41.67   

 16     : 1   3rd Qu.:0.7091   3rd Qu.:68.00   

 17     : 1   Max.   :0.8195   Max.   :99.00   

 (Other):43  

 

To determine whether the value of .58 is significant, we use the rwg.j.sim function using 

item correlations and average group size (41.67 rounded to 42).  In this case, notice the 

simulation suggests that a value of .35 is significant providing evidence of significant agreement.   
 

> RWG.J.OUT<-rwg.j.sim(gsize=42,nitems=3,nresp=5, 

   itemcors=cor(lq2002[,c("TSIG01","TSIG02","TSIG03")]), 

   nrep=1000) 

> summary(RWG.J.OUT) 

$rwg.j 

    Min.  1st Qu.   Median     Mean  3rd Qu.     Max.  

0.000000 0.000000 0.007224 0.088520 0.162500 0.548600  

$gsize 

[1] 42 

$nresp 

[1] 5 

$nitems 

[1] 3 

$rwg.j.95 

[1] 0.346875  

3.2.4 Average Deviation (AD) Agreement using ad.m 

Burke, Finkelstein and Dusig (1999) proposed using average deviation (AD) indices as 

measures of within-group agreement. Cohen et al., (2009) note that AD indices are also referred 

to as Mean or Median Average Deviation. AD indices are calculated by first computing the 

absolute deviation of each observation from the mean or median. Second, the absolute deviations 
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are averaged to produce a single AD estimate for each group. The formula for AD calculation on 

a single item is: 

AD = Σ|xij - Xj|/N 

where xij represents an individual observation (i) in group j; Xj represents the group mean or 

median, and N represents the group size.  When AD is calculated on a scale, the AD formula 

above is estimated for each item on the scale, and each item's AD value is averaged to compute 

the scale AD score. 

AD values are considered practically significant when the values are less than A/6 where A 

represents the number of response options on the item.  For instance, A is 5 when items are asked 

on a Strongly Disagree, Disagree, Neither, Agree and Strongly Agree format so any value less 

than .83 (5/6) would be considered practically significant. 

The function ad.m is used to compute the average deviation of the mean or median. The 

function requires the two arguments, x and grpid. The x argument represents the item or scale 

upon which to estimate the AD value. The ad.m function determines whether x is a vector 

(single item) or multiple item matrix (multiple items representing a scale), and performs the AD 

calculation appropriate for the nature of the input variable. The second function, grpid, is a 

vector containing the group ids of the x argument. The third argument is optional. The default 

value is to compute the Average Deviation of the mean. The other option is to change the type 

argument to "median" and compute the Average Deviation of the median. 

  For instance, recall that columns 2-12 in bhr2000 represent 11 items comprising a 

leadership scale.  The items were assessed using 5-point response options (Strongly Disagree to 

Strongly Agree), so the practical significance of the AD estimate is 5/6 or 0.83.  The AD 

estimates for the first five groups and the mean of the overall sample are provided below: 
 

> data(bhr2000) 

> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP) 

> AD.VAL[1:5,] 

  grpid      AD.M gsize 

1     1 0.8481366    59 

2     2 0.8261279    45 

3     3 0.8809829    83 

4     4 0.8227542    26 

5     5 0.8341355    82 

> mean(AD.VAL[,2:3]) 

      AD.M      gsize  

 0.8690723 54.5454545 

Two of the estimates are less than 0.833 suggesting these two groups (2 and 4) agree about 

ratings of leadership. The overall AD estimate is 0.87, which is also higher than 0.83 and 

suggests a general lack of agreement. 

The AD value estimated using the median instead of the mean, in contrast, suggests 

practically significant agreement for the sample as a whole. 
 

> AD.VAL <- ad.m(bhr2000[, 2:12], bhr2000$GRP,type="median") 

> mean(AD.VAL[,2:3]) 

      AD.M      gsize  

 0.8297882 54.5454545 
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To use the ad.m function for single item variables such as the work hours (HRS) variable in 

the bhr2000 data simply include the HRS vector instead of a matrix as the first argument. Recall 

that work hours is asked on an 11-point response format scale so practical significance is 11/6 or 

1.83.  The average observed AD value of 1.25 suggests within-group agreement about work 

hours across the sample as a whole. 
 

> AD.VAL.HRS <- ad.m(bhr2000$HRS, bhr2000$GRP) 

> mean(AD.VAL.HRS[,2:3]) 

     AD.M     gsize  

 1.249275 54.545455 

3.2.5 Significance testing ad.m.sim 

The function ad.m.sim is used to simulate AD values and test for significance of various 

combinations of group size, number of response options and number of items in multiple-item 

scales. The ad.m.sim function is similar to the rwg.sim and rwg.j.sim functions used to 

test the significance of rwg and rwg(j); however, unlike the functions for the two forms of the rwg, 

the ad.m.sim function works with both single items and multiple-item scales. 

The ad.m.sim function is based upon the work of Cohen et al. (2009) and of Dunlap et al., 

(2003). The function simulates AD values from a uniform null distribution for user supplied 

values of (a) group size, (b) number of items in the scale, and (c) number of response options on 

the items. Based on Cohen et al. (2009), the final optional parameter can include a correlation 

matrix when simulating multiple-item scales. The user also provides the number of simulation 

runs (repetitions) upon which to base the estimates. Again in practice, the number of simulation 

runs will typically be 10,000 or more although the examples illustrated here will be limited to 

1,000.   

To illustrate the ad.m.sim function, consider the 11 leadership items in the bhr2000 

dataframe.  Recall the AD value based on the mean suggested that groups failed to agree about 

leadership.  In contrast, the AD value based on the median suggested that groups agreed.  To 

determine whether the overall AD value based on the mean is statistically significant, one can 

simulate data matching the characteristics of the bhr2000 sample: 
 
> AD.SIM<-ad.m.sim(gsize=55,nresp=5, 

itemcors=cor(bhr2000[,2:12]),type="mean",nrep=1000) 

> summary(AD.SIM) 

$ad.m 

   Min. 1st Qu.  Median    Mean 3rd Qu.    Max.  

  1.087   1.182   1.208   1.209   1.236   1.340  

 

$gsize 

[1] 55 

 

$nresp 

[1] 5 

 

$nitems 

[1] 11 

 

$ad.m.05 

[1] 1.138212 
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$pract.sig 

[1] 0.8333333 

 

The simulation suggests that any AD mean value less than or equal to 1.14 is statistically 

significant. Thus, while the AD value for the leadership items (0.87) may not meet the criteria 

for practical significance, it does for statistical significance.  As with the rwg simulation 

functions, the ad.m.sim function has a specifically associated quantile function to identify 

different cut-off points. The example below illustrates how to identify values corresponding to 

the .90 (.10), .95 (.05) and .99 (.01) significance levels.  That is, to be 99% certain that a value 

was significant, it would need to be smaller than or equal to 1.114.  
 

> quantile(AD.SIM,c(.10,.05,.01)) 

  quantile.values confint.estimate 

1            0.10         1.155763 

2            0.05         1.138212 

3            0.01         1.114170 

3.2.6 Agreement:  Random Group Resampling 

The final agreement related function in the multilevel library is rgr.agree.  In some ways 

this function is similar to the rwg.j.sim function in that it uses repeated simulations of data to 

draw inferences about agreement.  The difference is that the rgr.agree function uses the 

actual group data, while the rwg.j.sim function simulates from an expected distribution (the 

uniform null). 

The rgr.agree function (a) uses Random Group Resampling to create pseudo groups and 

calculate pseudo group variances, (b) estimates actual group variances, and (c) performs tests of 

significance to determine whether actual group and pseudo group variances differ. To use 

rgr.agree, one must provide three variables. The first is a vector representing the variable 

upon which one wishes to estimate agreement. The second is group membership (grpid). The 

third parameter is the number of pseudo groups to generate. 

The third parameter requires a little explanation, because in many cases the number of pseudo 

groups returned in the output will not exactly match the third parameter. For instance, in our 

example, we will request 1000 pseudo groups, but the output will return only 990.  This is 

because the rgr.agree algorithm creates pseudo groups that are identical in size 

characteristics to the actual groups. In so doing, the algorithm creates sets of pseudo groups in 

“chunks.”  The size of each chunk is based upon the number of actual groups. So, if there are 99 

actual groups, then the total number of pseudo groups must be evenly divisible by 99.  Nine-

hundred-and-ninety is evenly divisible by 99, while 1000 is not. Rather than require the user to 

determine what is evenly divisible by the number of groups, rgr.agree will do this 

automatically.  Below is an example of using rgr.agree on the work hours variable. 
 

> RGR.HRS<-rgr.agree(bhr2000$HRS,bhr2000$GRP,1000) 

The first step is to create an RGR Agreement object named RGR.HRS. The object contains 

several components.  In most cases, however, users will be interested in the estimated z-value 

indicating whether the within-group variances from the actual groups are smaller than the 

variances from the pseudo groups.  A useful way to get this information is to use the summary 
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command.  When summary is applied to the RGR agreement object it provides standard 

deviations, variance estimates, an estimate of the z-value, and upper and lower confidence 

intervals. 
 

> summary(RGR.HRS) 

$"Summary Statistics for Random and Real Groups" 

  N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var  Z-value 

1       990      3.322772      0.762333       2.646583 -8.82554 

 

$"Lower Confidence Intervals (one-tailed)" 

    0.5%       1%     2.5%       5%      10%  

1.648162 1.795134 1.974839 2.168830 2.407337  

 

$"Upper Confidence Intervals (one-Tailed)" 

     90%      95%    97.5%      99%    99.5%  

4.251676 4.545078 4.832813 5.642410 5.845143 

 

The first section of the summary provides key statistics for contrasting within-group variances 

from real group with within-group variances from random groups. The second and third sections 

provide lower and upper confidence intervals. Keep in mind that if one replicates this example 

one is likely to get slightly different results because no random seed was set. While the exact 

numbers may differ, the conclusions drawn should be the same. 

The first section of the summary shows that the average within-group variance for the random 

groups was 3.32 with a Standard Deviation of 0.76. In contrast, the average within-group 

variance for the real groups was considerably smaller at 2.65. The estimated z-value suggests 

that, overall, the within-group variances in ratings of work hours from real groups were 

significantly smaller than the within-group variances from the random groups. These results 

suggest that group members agree about work hours. Recall that a z-value greater than or less 

than 1.96 signifies significance at p<.05, two-tailed. 

The upper and lower confidence interval information allows one to estimate whether specific 

groups do or do not display agreement. For instance, only 5% of the pseudo groups had a 

variance less than 2.17. Thus, if we observed a real group with a variance smaller than 2.17, we 

could be 95% confident this group variance was smaller than the variances from the pseudo 

groups. Likewise, if we want to be 90% confident we were selecting groups showing agreement, 

we could identify real groups with variances less than 2.41.   

To see which groups meet this criterion, use the tapply function in conjunction with the 

sort function. The tapply function partitions the first variable by levels of the second 

variable and performs a specified function much like the aggregate function (see section 

3.1.2). Below we partition HRS into separate Groups (GRP) and calculate the variance for each 

group (var).  Using sort in front of this command makes the output easier to read.   

 
> sort(tapply(bhr2000$HRS,bhr2000$GRP,var)) 

       33        43        38        19         6        39        69        17  

0.8242754 1.0697636 1.1295681 1.2783251 1.3166667 1.3620690 1.4566667 1.4630282  

       20        99        98        44         4        53        61        63  

1.5009740 1.5087719 1.5256410 1.5848739 1.6384615 1.6503623 1.6623656 1.7341430  
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       66        14        76        71        21        18        59        50  

1.7354302 1.7367089 1.7466200 1.7597586 1.7808500 1.7916027 1.8112599 1.8666667  

       48        60        83         8        22         2        75        11  

1.8753968 1.9267300 1.9436796 1.9476190 1.9679144 2.0282828 2.1533101 2.1578947  

       96        23        54        47        55        26        74        57  

2.1835358 2.1864802 2.2091787 2.2165242 2.2518939 2.2579365 2.2747748 2.2808858  

       45        97        64        35        32        41         1        24  

2.2975687 2.3386525 2.3535762 2.3563495 2.3747899 2.4096154 2.4284044 2.4391678  

       82        37        81        68        42        73        34        25  

2.4429679 2.4493927 2.5014570 2.5369458 2.5796371 2.6046154 2.6476418 2.6500000  

       93        62        92        12        40        88         5        29  

2.6602168 2.7341080 2.7746106 2.7906404 2.7916084 2.8505650 2.8672087 2.8748616  

       85        70        77        51         3        13        79        87  

2.8974843 2.9938483 3.0084034 3.0333333 3.0764032 3.1643892 3.1996997 3.2664569  

        7        95        78        84        46        27        36        15  

3.2712418 3.2804878 3.3839038 3.3886048 3.4084211 3.4309008 3.4398064 3.4425287  

       89        16        58        49         9        31        90        72  

3.4444444 3.4461538 3.4949020 3.5323440 3.6258065 3.6798419 3.8352838 3.9285714  

       91        80        86        10        94        28        30        56  

3.9565960 3.9729730 3.9753195 4.0336134 4.0984900 4.0994152 4.6476190 4.7070707  

       65        52        67  

4.7537594 5.2252964 5.3168148  

If we start counting from group 33 (the group with the lowest variance of 0.82) we find 46 

groups with variances smaller than 2.41. That is, we find 46 groups that have smaller than 

expected variance using the 90% confidence estimate. 

It may also be interesting to see what a “large” variance is when defined in terms of pseudo 

group variances.  This information is found in the third part of the summary of the RGR.HRS 

object. A variance of 4.55 is in the upper 95% of all random group variances. Given this 

criterion, we have five groups that meet or exceed this standard.  In an applied setting, one might 

be very interested in examining this apparent lack of agreement in groups 30, 56, 65, 52 and 67.  

That is, one might be interested in determining what drives certain groups to have very large 

differences in how individuals perceive work hours. 

Finally, for confidence intervals not given in the summary, one can use the quantile 

function with the random variances (RGRVARS) in the RGR.HRS object. For instance to get the 

lower .20 confidence interval: 

 
> quantile(RGR.HRS$RGRVARS, c(.20)) 

     20%  

2.695619 

Note that rgr.agree only works on vectors.  Consequently, to use rgr.agree with the 

leadership scale we would need to create a leadership scale score.  We can do this using the 
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rowMeans function.  We will create a leadership scale (LEAD) and put it in the bhr2000 

dataframe, so the specific command we issue is: 

>bhr2000$LEAD<-rowMeans(bhr2000[,2:12],na.rm=TRUE) 

Now that we have created a leadership scale score, we can perform the RGR agreement 

analysis on the variable. 

 
> summary(rgr.agree(bhr2000$LEAD,bhr2000$GRP,1000)) 

 

$"Summary Statistics for Random and Real Groups" 

  N.RanGrps Av.RanGrp.Var SD.Rangrp.Var Av.RealGrp.Var  Z-value 

1       990     0.6011976     0.1317229      0.5156757 -6.46002 

 

$"Lower Confidence Intervals (one-tailed)" 

     0.5%        1%      2.5%        5%       10%  

0.2701002 0.3081618 0.3605966 0.3939504 0.4432335  

 

$"Upper Confidence Intervals (one-Tailed)" 

      90%       95%     97.5%       99%     99.5%  

0.7727185 0.8284755 0.8969857 0.9651415 1.0331922 

The results indicate that the variance in actual groups about leadership ratings is significantly 

smaller than the variance in randomly created groups (i.e., individuals agree about leadership).  

For interesting cases examining situations where group members do not agree see Bliese & 

Halverson (1998a) and Bliese and Britt (2001). 

Ongoing research continues to examine the nature of RGR based agreement indices relative to 

ICC(1), ICC(2) and other measures of agreement such as the rwg (e.g., Lüdtke & Robitzsch, 

2009).  This work indicates that measures of RGR agreement are strongly related to the 

magnitude of the ICC values. 

3.2.7 Reliability:  ICC(1) and ICC(2) 

Reliability indices differ from agreement indices (see Bliese, 2000; LeBreton & Senter, 2008), 

and the multilevel package contains the ICC1 and ICC2 functions to estimate reliability. These 

two functions are applied to ANOVA models and are used to estimate ICC(1) and ICC(2) as 

described by Bartko, (1976), James (1982), and Bliese (2000).  

These two functions are applied to a one-way analysis of variance model using aov. Notice 

the as.factor function on GRP in the command below which designates GRP (a numeric 

vector) as being categorical or nominal. Once specified as categorical, R creates N-1 dummy 

codes in the model matrix using GRP 1 as the referent. More specifically, the contrast default in 

as.factor is contr.treatment which uses the first factor as the referent; however, R 

provides numerous options for controlling dummy and effects coding – see 

help(contrasts) for details. In the present example, the 99 groups result in 98 dummy-

coded categories (98 df). 
 

> data(bhr2000) 

> hrs.mod<-aov(HRS~as.factor(GRP),data=bhr2000) 

> summary(hrs.mod) 

                 Df  Sum Sq Mean Sq F value    Pr(>F)     



Multilevel Models in R  26 

as.factor(GRP)   98  3371.4    34.4  12.498 < 2.2e-16 *** 

Residuals      5301 14591.4     2.8                       

--- 

Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  

 

The ICC1 and ICC2 functions are then applied to the aov object. 

> ICC1(hrs.mod) 

[1] 0.1741008 

> ICC2(hrs.mod) 

[1] 0.9199889 

The ICC(1) value is equivalent to the ICC term referred to the mixed-effects model literature 

(e.g., Bryk & Raudenbush, 1992; 2002) and a value of .17 indicates that 17% of the variance in 

individual perceptions of work hours can be “explained” by group membership. The ICC(2) is a 

measure of group-mean reliability and a value of .92 indicates that groups can be reliably 

differentiated in terms of average work hours (see Bliese, 2000). 

3.2.8 Estimate multiple ICC values:  mult.icc 

The mult.icc function can be used to estimate multiple ICC(1) and ICC(2) values in a 

given data set.  Code to estimate the ICC(1) and ICC(2) values for work hours, coping with 

religion, and three different leadership items in the bhr2000 data set is provided below. In the 

function, the first element is a subset of the dataframe with the variables of interest and the 

second element is the grouping variable. 

 
> mult.icc(bhr2000[,c("HRS","RELIG","AF06","AF07","AP12")],bhr2000$GRP) 

  Variable        ICC1      ICC2 

1      HRS 0.177543969 0.9217206 

2    RELIG 0.009801542 0.3506163 

3     AF06 0.103492912 0.8629524 

4     AF07 0.087490365 0.8394800 

5     AP12 0.149052933 0.9052514 

The results suggest that individuals use of religion as a coping mechanism had the lowest 

ICC(1) value (less than 1% of the variance in an individual’s response can be explained by group 

membership). The mult.icc function is based upon lme from the nlme package so it returns 

slightly different ICC(1) and ICC(2) estimates for Work Hours (0.178 and 0.922, respectively) 

than estimates based on the aov models (0.174 and 0.920). If group sizes equal, the lme and 

aov approach would provide virtually identical values. In general, the preferred method with 

unbalanced data would be to use lme. One other difference (not illustrated here) is that ICC(1) 

values estimated in OLS can be negative, but ICC(1) values based on mixed-effects models have 

a lower bound of zero.  

3.2.9 Comparing ICC values with a two-stage bootstrap: boot.icc 

When examining ICC values, it can often be informative to estimate a sampling distribution to 

determine whether ICC values differ. For instance, the ICC(1) values for Work Hours is 0.178 

(mixed-effects model), but it is not clear whether the other values which are lower significantly 

differ from 0.178. One way to answer the question of whether ICC values differ is to estimate a 

measure of variability around the point estimates. The boot.icc is an experimental function 
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that performs a two-stage bootstrap.  A two-stage first samples with replacement from level-2 

units (the groups) followed by sampling with replacement from individuals within the level-2 

units. The function is computationally intensive, but is illustrated below both with using lme 

(the default) and aov (an option) as the computational algorithm underlying the ICC(1) estimate: 

 

> system.time(OUT.HRS.lme<-boot.icc3(bhr2000$HRS,bhr2000$GRP,1000)) 

   user  system elapsed  

 292.87    0.53  295.86  

> quantile(OUT.HRS.lme,c(0.025,.975)) 

     2.5%     97.5%  

0.1372000 0.2211409  

 

> system.time(OUT.HRS.aov<-boot.icc3(bhr2000$HRS,bhr2000$GRP,1000, 

  aov.est=TRUE)) 

   user  system elapsed  

 301.93    3.35  307.89  

> quantile(OUT.HRS.aov,c(0.025,.975)) 

     2.5%     97.5%  

0.1302396 0.2160199  

Notice that the aov option is slightly slower and the values are slightly smaller which is not 

surprising given that the aov estimate of the ICC(1) is smaller than the lme estimate. The lme 

percentile-based 95% confidence interval for the ICC(1) for work hours is [0.137, 0.221] 

suggesting that single point estimates of ICC(1) values outside this range would significantly 

differ from those associated with Work Hours. In the example using mult.icc everything 

except AP12 (I am impressed by the quality of leadership in this company) has a smaller ICC(1) 

value than the lower confidence interval of 0.137 for work hours. A more thorough comparison 

would involve estimating confidence intervals for AP12 and using both sets of confidence 

intervals to draw inferences (Cummings & Finch, 2005). Finally note that performing a non-

parametric bootstrap of nested data is controversial because it is not clear how to best sample 

with replacement. 

3.2.10 Visualizing an ICC(1) with graph.ran.mean 

It is often valuable to visually examine the group-level properties of data to see the form of 

the group-level effects. Levin (1967) observed that high ICC(1) values can be the product of one 

or two highly aberrant groups rather than indicating generally shared group properties among the 

entire sample. 

One way to examine the group-level properties of the data is to contrast the observed group 

means with group means that are the result of randomly assigning individuals to pseudo groups.  

If the actual group means and the pseudo-group means are identical, there is no evidence of 

group effects. If one or two groups are clearly different from the pseudo-group distribution it 

suggests the ICC(1) value is simply caused by a few aberrant observations. If a number of groups 

have higher than expected means, and a number have lower than expected means, it suggests 

fairly well-distributed group-level properties. 

The graph.ran.mean function can be used to visually contrast actual group means with 

pseudo group means. The function requires three parameters. The first is the variable of interest.  

The second is the group designator, and the third is a smoothing parameter (nreps) determining 

how many sets of pseudo groups should be created to create the pseudo group curve. Low 



Multilevel Models in R  28 

numbers (<10) for this last parameter create a choppy line while high numbers (>25) create 

smooth lines.  In cases where the parameter bootci is TRUE (see optional parameters), nreps 

should equal 1000 or more. 

  Three optional parameters control the y axis limits (limits); whether a plot is created 

(graph=TRUE) or a dataframe is returned (graph=FALSE); and whether bootstrap confidence 

intervals are estimated and plotted (bootci=TRUE).  The default for limits is to use the 

lower 10% and upper 90% values of the raw data.  The default for graph is to produce a plot, 

but returning a dataframe can be useful for exporting results for subsequent graphing in 

ggplot2 or other packages.  Finally, the default for bootci is to return a plot or a dataframe 

without bootstrap confidence interval estimates. In the following example, we plot the observed 

and pseudo group distribution of the work hours variable from the data set bhr2000. 
 

> data(bhr2000) 

> graph.ran.mean(bhr2000$HRS,bhr2000$GRP,nreps=1000, 

limits=c(8,14),bootci=TRUE) 

 

The function produces the resulting plot where the bar chart represents each groups' average 

rating of work hours sorted from highest to lowest, and the line represents a random distribution 

where 99 pseudo groups (with exact size characteristics of the actual groups) were created 1000 

times and the sorted values were averaged across the 1000 iterations.  The dotted lines represent 

the upper and lower 95% confidence interval estimates.  In short, the line represents the expected 

distribution if there were no group-level properties associated with these data. The graph 

suggests fairly evenly distributed group-level properties associated with the data although two 

groups do stand out – one on the extreme high end and one on the extreme low end. In the end, 

though, the graph along with the results from the two-stage bootstrap analyses (section 3.2.11) 

which placed the ICC(1) estimate of 0.178 fairly close to the center of the 95% confidence 

interval of [0.137, 0.221]  suggests that the ICC(1) values are not being driven by extreme 

groups (experience with other data suggests that a few extreme groups stand out in graphs and 

they also produce confidence intervals asymmetrical to the point estimate). 
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3.2.11 Simulating ICC(1) values with sim.icc 

ICC(1) values play a key role in multilevel data; therefore, the ability to simulate ICC(1) 

values can be a valuable tool to help understand multilevel data and analyses. The sim.icc 

function generates data with specific ICC(1) values. Multiple vectors (items) can be generated in 

one of two ways:  either with or without level-1 correlations. The function is used to generate a 

single vector (VAR1) below: 
 

> set.seed(1535324) 

> ICC.SIM<-sim.icc(gsize=10,ngrp=100,icc1=.15) #Simulate a single vector 

> ICC.SIM[c(1:3,11:13),]  # Examine a few rows of simulated data 

   GRP       VAR1 

1    1  0.2800938 

2    1 -1.4002869 

3    1 -2.1422593 

11   2 -1.3098119 

12   2 -2.7164491 

13   2 -0.3160884  
 

> ICC1(aov(VAR1~as.factor(GRP), ICC.SIM)) 

[1] 0.16681 

 

In the next example, four items are generated without any level-1 correlation among items.  

These data would represent a situation in which any observed raw correlation would be the due 

to the ICC(1) value. The example below uses the waba function discussed in section 3.4.1 to 

perform a variance decomposition of several raw correlations. 

 
> set.seed(15324) 

> ICC.SIM<-sim.icc(gsize=10,ngrp=100,icc1=.15,nitems=4) 
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> mult.icc(ICC.SIM[,2:5],ICC.SIM$GRP) 

  Variable      ICC1      ICC2 

1     VAR1 0.2035837 0.7188047 

2     VAR2 0.1442111 0.6275778 

3     VAR3 0.2229725 0.7415725 

4     VAR4 0.1549414 0.6470794 

 

> with(ICC.SIM,waba(VAR1,VAR2,GRP))$Cov.Theorem  #Examine CorrW  

     RawCorr    EtaBx     EtaBy     CorrB    EtaWx     EtaWy       CorrW 

1 0.07728039 0.530273 0.4775097 0.5939511 0.847827 0.8786265 -0.09815005 

 

> with(ICC.SIM,waba(VAR1,VAR3,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB    EtaWx     EtaWy       CorrW 

1 0.1769287 0.530273 0.5464122 0.6723887 0.847827 0.8375164 -0.02520087 

 

> with(ICC.SIM,waba(VAR1,VAR4,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB    EtaWx     EtaWy      CorrW 

1 0.1943248 0.530273 0.4874644 0.6127858 0.847827 0.8731429 0.04853107 

 

Notice that the ICC(1) values for each item are variable (a function of small group sizes and a 

relatively small number of groups).  Notice also that the CorrW (within-group correlation) 

values for three of the bivariate correlations vary around zero while RawCorr (the raw 

correlations) varies around .15 which corresponds to the simulated ICC(1) value. 

 

As a final example, the code below incorporates a level-1 correlation of .30 among variables.  

Notice that the within-group correlation varies around .30 and the raw correlation increases as a 

function of the level-1 correlation and the ICC(1) value. 
 

> set.seed(15324) 

> ICC.SIM<-sim.icc(gsize=10,ngrp=100,icc1=.15,nitems=4,item.cor=.3)  

> mult.icc(ICC.SIM[,2:5],ICC.SIM$GRP) 

  Variable      ICC1      ICC2 

1     VAR1 0.1669452 0.6671118 

2     VAR2 0.1558558 0.6486689 

3     VAR3 0.1381652 0.6158502 

4     VAR4 0.1715351 0.6743219 

 

> with(ICC.SIM,waba(VAR1,VAR2,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB     EtaWx     EtaWy     CorrW 

1 0.3987741 0.498367 0.4883034 0.6976093 0.8669662 0.8726739 0.3026887 

 

> with(ICC.SIM,waba(VAR1,VAR3,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB     EtaWx     EtaWy     CorrW 

1 0.3746905 0.498367 0.4718088 0.7083573 0.8669662 0.8817009 0.2722794 

 

> with(ICC.SIM,waba(VAR1,VAR4,GRP))$Cov.Theorem  #Examine CorrW  

    RawCorr    EtaBx     EtaBy     CorrB     EtaWx     EtaWy     CorrW 

1 0.3732463 0.498367 0.5024739 0.7104143 0.8669662 0.8645924 0.2606111 

 

3.3 Regression and Contextual OLS Models 

Contextual models represent a basic form a multilevel model where both the raw predictor 

and the group-mean of the same predictor are included in the model. For instance, regressing 
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Well-Being on individual work hours and group average work hours would represent a basic 

contextual model. A significant effect for the group-mean predictor indicates that the slope for 

the group-means differs from the slope for the individual-level variables and suggests a 

contextual effect is present (Firebaugh, 1978; Snijders & Bosker, 1999).  

Prior to the introduction of multilevel mixed-effects models, OLS regression models were 

widely used to detect contextual effects. Firebaugh (1978) provides a good methodological 

discussion of these types of contextual models as does Kreft and De Leeuw (1998) and James 

and Williams (2000). While OLS regression has historically been used to estimate contextual 

regression models, the models can severely underestimate the standard error associated with the 

group-level effect producing tests that are too liberal. For this reason, mixed-effects models are 

the more appropriate way to identify contextual effects. 

3.3.1 Contextual Effect Example 

  In this example, we use the bh1996 dataframe to illustrate a contextual model involving 

work hours, group work hours and well-being presented in Bliese (2002).  The bh1996 

dataframe has group mean variables included along with the group-mean center or demeaned 

variables. 
 

> data(bh1996) 

> names(bh1996) 

 [1] "GRP"      "COHES"    "G.COHES"  "W.COHES"  "LEAD"     "G.LEAD"   

 [7] "W.LEAD"   "HRS"      "G.HRS"    "W.HRS"    "WBEING"   "G.WBEING" 

[13] "W.WBEING" 

 

> tmod<-lm(WBEING~HRS+G.HRS,data=bh1996)  

> round(summary(tmod)$coef,4) 

            Estimate Std. Error  t value Pr(>|t|) 

(Intercept)   4.7831     0.1364  35.0680        0 

HRS          -0.0465     0.0049  -9.4307        0 

G.HRS        -0.1308     0.0130 -10.0596        0 

Notice that G.HRS is significant with a t-value of –10.06 suggesting a significant contextual 

effect. Later we show that this t-value is highly inflated by a standard error that is too small. 

Nonetheless, it is informative to plot the form of the relationship showing that the group-mean 

slope (the dotted line) is considerably steeper than the individual slope (the solid line). Notice the 

use of !duplicated(bh1996$GRP) to select only the first row with a specific group’s 

group-level data effectively reducing the sample size to 99 group means: 
 

> plot(bh1996$HRS,bh1996$WBEING,xlab="Work Hours", 

  ylab="Well-Being",type="n") #type = n omits the 7,382 points 

 

> abline(lm(WBEING~HRS,data=bh1996)) # plots the individual-level slope 

> abline(lm(G.WBEING~G.HRS,data=bh1996[!duplicated(bh1996$GRP),]), 

  lty=2) #group-level slope 
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The idea that relationship strength might differ across levels is fundamental to multilevel 

analyses, so the basic idea of contextual regression is important. Fortunately, the problem with 

using OLS regression and having a standard error that is too small can be fixed in mixed-effect 

models (illustrated in section 4).  For more details on the effects of non-independence see Bliese 

(2002); Bliese and Hanges (2004); Kenny and Judd, (1986) and Snijders and Bosker, (1999). 

3.3.2 Contextual Effect Plot Using ggplot2 

As an example of some of R’s graphics capabilities, I reproduce the contextual effect using 

ggplot2.  

 
library(ggplot2) 

 

win.graph(height=4.75,width=6) #quartz() for MAC 

 

data(bh1996) 

 

bh1996.grp<-bh1996[!duplicated(bh1996$GRP), 

      c("G.COHES","G.LEAD","G.HRS","G.WBEING")] 

 

g <- ggplot(bh1996.grp, aes(x=G.HRS, y=G.WBEING))+ 

  labs(title = "Group Work Hours and Well-Being", 

       subtitle = "(Individual-Level Slope in Red)", 

       x = "Company Work Hours", 

       y = "Company Well-Being") 

 

g+coord_cartesian(xlim = c(5, 15),ylim=c(1,5))+ 

  geom_point(color="#477b7d")+ 

  geom_smooth(method="lm",fullrange=TRUE, 

              se=FALSE,color="#477b7d")+ 
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  geom_smooth(data=bh1996,aes(x=HRS,y=WBEING), 

              method="lm",color="firebrick4")+ 

  scale_x_continuous(breaks=seq(0,24,by=2))+ 

  theme( 

    plot.title = element_text(color="black", size=14,  

                      hjust=0.5,face="bold.italic"), 

    plot.subtitle = element_text(color="black", size=13,  

                              hjust=0.5,face="italic"), 

    axis.title.x = element_text(color="black", size=14), 

    axis.title.y = element_text(color="black", size=14), 

    axis.text = element_text(color="black",size=13,face="bold"), 

    panel.border = element_rect(fill = NA, colour = "black", 

                                size = rel(1)), 

    panel.background = element_rect(fill = "transparent", 

                                    colour = NA), 

    panel.grid = element_line(colour = "grey87"),  

    panel.grid.major = element_line(size = rel(1)),  

    panel.grid.minor = element_line(size = rel(0.25)),  

    axis.ticks = element_line(colour = "black", 

                              size = rel(0.5)) 

  ) 

ggsave(filename = "c:\\temp\\plotgg.jpg", 

       device = "jpeg") 

 

 

3.4 Correlation Decomposition and the Covariance Theorem 

OLS contextual models provide a way to determine whether regression slopes based on group 

means differ from regression slopes based on individual-level variables (while the OLS 
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contextual model for the group-mean predictor is biased by being too liberal, a null effect from 

the group-mean is informative). The covariance theorem provides a contextual model analog for 

correlations by breaking down a raw correlation into two separate components – the portion of 

the raw correlation attributable to within-group (individual) processes, and the portion of the 

correlation attributable to between-group (group-level) processes. 

Robinson (1950) proposed the covariance theorem, and Dansereau and colleagues 

incorporated the theorem it into an analysis system they labeled WABA for Within-And-

Between-Analyses (Dansereau, Alutto  & Yammarino, 1984). WABA has two components: 

WABA I and WABA II. The first component (WABA I) uses decision tools based on eta values 

to inform decisions about the individual or group-level nature of the data. Eta values, however, 

are highly influenced by group size and unfortunately WABA I makes no group size 

adjustments; consequently, there is little value in using WABA I criteria unless one is working 

with dyads (see Bliese, 2000; Bliese & Halverson, 1998b).   

Arguably a more useful way to draw inferences from eta-values is to contrast eta-values from 

actual groups to eta-values from pseudo groups. I illustrate this in a Random Group Resampling 

extension of the covariance theorem decomposition (see section 3.4.2). We begin, however, with 

a simple WABA analysis. 

3.4.1 The waba and cordif functions 

WABA II revolves around estimating the covariance theorem components, and the waba 

function in the multilevel library provides these components. The example partitions the raw 

correlation between work hours and well-being using the same data as used in the OLS 

contextual model example (section 3.3.1). The within-group correlation (CorrW) is group-mean 

centered (or demeaned) X and Y values. The group-level correlation (CorrB) represents the 

correlation between group means weighted by the size of each group. 
 

> waba(bh1996$HRS,bh1996$WBEING,bh1996$GRP) 

$Cov.Theorem 

     RawCorr     EtaBX     EtaBY      CorrB     EtaWX     EtaWY      CorrW 

1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031 

$n.obs 

[1] 7382 

$n.grps 

[1] 99 

The waba function returns a list with three elements. The first is the covariance theorem with 

all its components. The second is the number of observations, and the third is the number of 

groups.  The latter two elements should routinely be examined because the waba function, by 

default, performs listwise deletion of missing values. 

The raw correlation = (EtaBX*EtaBY*CorrB) + (EtaWX*EtaWY*CorrW) or 

 
> (.379*.236*-.712)+(.925*.972*-.111) 

[1] -0.1634842  

The first set of parentheses represents the between-group component of the correlation, and 

the second set of parentheses represents the within-group component. 
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The weighted group-mean correlation of -.71 appears significantly larger than the within-

group correlation of -.11. Since these two correlations are independent, we can contrast them 

using the cordif function. This function performs an r to z' transformation of the two 

correlations (see also the rtoz function) and then tests for differences between the two z' values 

using the formula provided in Cohen and Cohen (1983, p. 54). Four arguments are provided to 

cordif: (1) the first correlation of interest, (2) the second correlation of interest, (3) the N on 

which the first correlation is based, and (4) the N on which the second correlation is based. In our 

example, we already have the two correlations of interest (-.11 and -.71) and the relevant N 

values for the number of groups (99). The N for the within-group correlation is calculated as the 

total N minus the number of groups (see Dansereau, et al., 1984) which is 7,382 minus 99 or 

7,283.  
 

> cordif(rvalue1=-.1107, rvalue2=-.7122, n1=7283, n2=99) 

$"z value" 

[1] 7.597172 

The z-value is larger than 1.96, so we conclude that the two correlations are significantly 

different for each other. This finding mirrors what we found in our contextual analysis but with 

an appropriate z-value.  

3.4.2 Random Group Resampling of Covariance Theorem (rgr.waba) 

As noted above, it may be interesting to see how the eta-between, eta-within, between group 

and within-group correlations vary as a function of the group-level properties of the data. The 

rgr.waba function provides a way to examine the group-level properties of elements of the 

covariance theorem. Essentially, the rgr.waba function allows one to answer questions such as 

"is the eta-between value for x larger than would be expected by chance?".  The rgr.waba 

function randomly assigns individuals into pseudo groups having the exact size characteristics as 

the actual groups, and then calculates the covariance theorem parameters. By repeatedly 

assigning individuals to pseudo groups and re-estimating the covariance theorem components, 

one can create sampling distributions of the covariance theorem components to see if actual 

group results differ from pseudo group results (see Bliese & Halverson, 2002). Below I illustrate 

the use of rgr.waba.  Note that this is a very computationally intensive routine, so it may take 

some time to complete.   
 
> with(bh1996, waba(HRS,WBEING,GRP))$Cov.Theorem  

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031 

> RGR.WABA<-rgr.waba(bh1996$HRS,bh1996$WBEING,bh1996$GRP,1000) 

> round(summary(RGR.WABA),dig=4) 

       RawCorr     EtaBx     EtaBy     CorrB     EtaWx     EtaWy     CorrW 

NRep 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 1000.0000 

Mean   -0.1632    0.1154    0.1151   -0.1614    0.9933    0.9933   -0.1632 

SD      0.0000    0.0082    0.0081    0.0961    0.0010    0.0009    0.0013 

 

The summary of the rgr.waba object produces a table giving the number of random 

repetitions, the means and the standard deviations from analysis. Notice that when there are no 

meaningful group differences, the between-group correlation, the raw correlation, and the within-

group correlation all have the same value (with some rounding error). The raw correlation has a 
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standard deviation of zero because it does not change. In contrast, the between-group correlation 

has the highest standard deviation (.096) indicating that it varied the most across the pseudo 

group runs. All of covariance theorem components in the actual groups significantly vary from 

their counterparts in the pseudo group analysis because most actual group values are more than 

two standard deviations different from the pseudo group means. 

To further test for significant differences, we can examine the sampling distribution of the 

random runs, and use the 2.5% and 97.5% sorted values to approximate 95% confidence 

intervals. Any values outside of this range would be considered significantly different from their 

pseudo group counterparts.  

 

> quantile(RGR.WABA,c(.025,.975)) 

           EtaBx      EtaBy       CorrB     EtaWx     EtaWy      CorrW 

2.5%  0.09944367 0.09916248 -0.34021577 0.9913014 0.9914049 -0.1658118 

97.5% 0.13161137 0.13082964  0.03106165 0.9950432 0.9950713 -0.1607501 

 

  All of the covariance theorem values based on the actual groups are outside of the 95% 

confidence interval estimates. In other words, all the actual group results are significantly 

different than would be expected if individuals had been randomly assigned to groups (p<.05). 

The 99% confidence intervals draw the same conclusion at a more stringent confidence level. 

 
> quantile(RGR.WABA,c(.005,.995)) 

           EtaBx      EtaBy      CorrB     EtaWx     EtaWy      CorrW 

0.5%  0.09307571 0.09416619 -0.4065661 0.9907133 0.9908819 -0.1666120 

99.5% 0.13596781 0.13473339  0.1049678 0.9956590 0.9955565 -0.1596676 

 

Keep in mind that a replication is likely to differ slightly from results presented here because 

we did not start by setting a random seed. 

3.5 Simulate Multilevel Correlations (sim.mlcor) 

Contextual effects where relationships significantly differ across levels such as the illustration 

involving work hours and well-being are common. In many cases, the effects are less dramatic 

than having a within-group correlation of -.11 and a between-group correlation of -.71, but 

contextual effects exist and what drives them is relatively unexplored. One necessary, but not 

sufficient, condition for observing contextual effects is that both variables must have non-zero 

ICC(1) values (see Bliese, 1998). For this reason, researchers who are focused on modeling 

shared properties of constructs such as safety climate, cohesion, or team emotional cultures need 

to develop measures that have good ICC1 values and differentiate groups (see Bliese, Maltarich, 

Hendricks, Hofmann & Adler, 2019). 

The sim.mlcor (simulate multilevel correlation) function was designed to help explore 

how measurement properties at different levels impact observed raw, within, and between-group 

correlations. We could examine, for example, how correlations would have differed if we had 

been able to increase the ICC(1) values or alpha values of the variables. 

In the function, users provide group size, the number of groups, a between-group correlation, 

a within-group correlation, an ICC(1) for x, an ICC(1) for y, and alpha values for both x and y. 

The function returns a simulated dataset. 
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We can create a simulated dataset for our running example involving work hours and well-

being by first obtaining the values from the actual data: 

 
> data(bh1996) 

> with(bh1996,waba(HRS,WBEING,GRP)) 

$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1632064 0.3787881 0.2359287 -0.7121729 0.9254834 0.9717704 -0.1107031 

 

$n.obs 

[1] 7382 

 

$n.grps 

[1] 99 

 

> mult.icc(bh1996[,c("HRS","WBEING")],bh1996$GRP) 

  Variable       ICC1      ICC2 

1      HRS 0.12923699 0.9171286 

2   WBEING 0.04337922 0.7717561 

 

In this case, the group-level correlation of -.71 is smaller than it would have been if group 

means had reliabilities of 1. Instead, the ICC(2) values show that the  group-mean reliability for 

work hours is .92 and for well-being the value is .77. We can correct the -.71 value by adjusting 

the incremental effect (the difference between the within-group and between-group correlation) 

for attenuation using ICC(2) values and adding this effect back to the within-group correlation. 

 
> (-0.7121729--0.1107031)/sqrt(0.9171286*0.7717561)+-0.1107031 

[1] -0.8256251 

 

From this correction we can assume that if the ICC(2) values for both variables had been 1, 

the group-mean correlation would have been -.826. Using these data in the simulation and 

assuming an average group sizes of 75 (7382/99) and alpha values of 1, we obtain the following 

simulated dataset with results that mirror our actual data. Here I set a seed so exact results can be 

replicated. 

 
> set.seed(578323) 

> SIM.ML.COR<-sim.mlcor(gsize=75,ngrp=99,gcor=-.8256,wcor=-.1107, 

+                       icc1x=0.04338,icc1y=0.12924,alphax=1,alphay=1) 

 

> with(SIM.ML.COR,waba(X,Y,GRP)) 

$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1699012 0.2317119 0.3804799 -0.7353652 0.9727844 0.9247892 -0.1167938 

 

$n.obs 

[1] 7425 

 

$n.grps 

[1] 99 

 

> mult.icc(SIM.ML.COR[,c("X","Y")],SIM.ML.COR$GRP) 

  Variable       ICC1      ICC2 
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1        X 0.04142764 0.7642263 

2        Y 0.13448630 0.9209720 

 

To see the implications of having had a zero ICC(1) for the one of the variables, we can rerun 

the simulation and show that the between-group correlation no longer differs from the within or 

raw. This result is entirely expected because a necessary condition for contextual effects is a non-

zero ICC(1) on both variables. 

 
> SIM.ML.COR<-sim.mlcor(gsize=75,ngrp=99,gcor=-.8256,wcor=-.1107, 

+                       icc1x=0,icc1y=0.12924,alphax=1,alphay=1) 

 

> with(SIM.ML.COR,waba(X,Y,GRP))$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1304409 0.1256461 0.3688716 -0.1483209 0.9920751 0.9294803 -0.1340036 

 

> mult.icc(SIM.ML.COR[,c("X","Y")],SIM.ML.COR$GRP) 

  Variable        ICC1      ICC2 

1        X 0.002640832 0.1656842 

2        Y 0.125605587 0.9150646 

 

To see the implications of improved the group-level measurement properties of the well-being 

measure to better differentiate groups, we can increase the ICC(1) for X to be .10 which 

produces a between-group correlation of -.76 in this particular run. The raw correlation also 

inherits more from the group correlation and increases to -.19. 

 
> SIM.ML.COR<-sim.mlcor(gsize=75,ngrp=99,gcor=-.8256,wcor=-.1107, 

+             icc1x=.10,icc1y=0.12924,alphax=1,alphay=1) 

 

> with(SIM.ML.COR,waba(X,Y,GRP))$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy      CorrW 

1 -0.1947374 0.3607571 0.3796512 -0.7638527 0.9326598 0.9251297 -0.1044453 

 

> mult.icc(SIM.ML.COR[,c("X","Y")],SIM.ML.COR$GRP) 

  Variable      ICC1      ICC2 

1        X 0.1195602 0.9105922 

2        Y 0.1338431 0.9205681 

 

Finally, to illustrate one of Bliese et al.’s (2019) main points that individual reliability indices 

such as alpha are largely irrelevant to the magnitude of between-group correlations, we can 

change the alpha for both X and Y to be .70.  In this case, note that the within-correlation is now 

-.08 and would be adjusted back to -.11 if corrected for attenuation (-.08/sqrt(.7*.7)) 

 
> SIM.ML.COR<-sim.mlcor(gsize=75,ngrp=99,gcor=-.8256,wcor=-.1107, 

+             icc1x=0.04338,icc1y=0.12924,alphax=.7,alphay=.7) 

> with(SIM.ML.COR,waba(X,Y,GRP))$Cov.Theorem 

     RawCorr     EtaBx     EtaBy      CorrB     EtaWx     EtaWy       CorrW 

1 -0.1356601 0.2287517 0.3741004 -0.6967766 0.9734848 0.9273882 -0.08421891 

> mult.icc(SIM.ML.COR[,c("X","Y")],SIM.ML.COR$GRP) 

  Variable       ICC1      ICC2 

1        X 0.04003354 0.7577361 

2        Y 0.12957194 0.9177936 
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For detailed examinations of measurement properties, the examples presented would need to 

be put within a Monte Carlo function and averaged across multiple iterations, but the 

sim.mlcor function provides a way to generate multilevel correlations.   

4 Mixed-Effects Models for Multilevel Data  

This section illustrates the use of mixed-effects models to analyze multilevel data using the 

nlme package (Pinhiero & Bates, 2000). Most of the examples described in this section are 

taken from Bliese (2002) and use the Bliese and Halverson (1996) data (bh1996). Model 

notation is based on Bryk and Raudenbush’s (1992) and Raudenbush and Bryk (2002). 

A complete description of mixed-effects modeling is beyond the scope of this document; 

nonetheless, a short overview is presented to help facilitate the illustration of the methods. For 

more detailed discussions see Bliese, (2002); Bliese, Maltarich and Hendricks, 2018; Bryk and 

Raudenbush, (1992); Hofmann, (1997); Hox (2002); Kreft and De Leeuw, (1998); Pinheiro and 

Bates (2000); Raudenbush and Bryk (2002) and Snidjers and Bosker (1999). 

One can think of mixed-effects models as ordinary regression models that have additional 

variance terms for handling non-independence due to group membership. The key to mixed-

effects models is to understand how nesting individuals within groups can produce additional 

sources of variance (non-independence) in data. 

The first variance term that distinguishes a mixed-effects model from a regression model is a 

term that reflects the degree to which groups differ in their mean values (intercepts) on the 

dependent variable (DV). A significant variance term (00) indicates that groups significantly 

differ in terms of the DV and further suggests that it may be useful to include group-level 

variables as predictors. Group-level variables (or level-2 variables) differ across groups but are 

consistent for members within the same groups.  For example, group average work hours are the 

same across all members of the same group and represents a level-2 variable that could 

potentially be used to predict group-level variance (00) in well-being. 

The second variance term that distinguishes a mixed-effects model from typical regression 

reflects the degree to which slopes between independent and dependent variables vary across 

groups (11). Single-level regression models generally assume that the relationship between the 

IV and DV is constant across groups. In contrast, mixed-effects models permit testing whether 

the slope varies among groups.  If slopes significantly vary, we can explain the variation by 

including a cross-level interaction using a level-2 variable such as average group work hours to 

explain why the slope between IV and DV in some groups is stronger than the slopes in other 

groups.  

A third variance term is common to both mixed-effects models and regression models. This 

variance term, 2, reflects the degree to which an individual score differs from its predicted value 

within a specific group. 2 represents the within-group variance and is predicted individual-level 

or level-1 variables. Level-1 variables differ among members of the same group.  For instance, a 

level-1 variable such as participant age would vary among members of the same group. 

In summary, in a complete mixed-effect model analysis, one examines (1) level-1 factors 

related to the within-group variance 2; (2) group-level factors related to the between-group 

variation in intercepts 00; and (3) group-level factors related to within-group slope differences, 
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11.  The next sections re-analyze portions of the Bliese and Halverson (1996) data set to 

illustrate a typical sequence of steps used in multilevel modeling.  

4.1 Steps in multilevel modeling 

4.1.1 Step 1:  Examine the ICC for the Outcome   

Because multilevel modeling involves predicting variance at different levels, it is important to 

begin by determining the levels where significant variation exists. In the case of the two-level 

model (the only models considered here) we can assume there is significant variation in the 

within-group variance, 2. We do not necessarily assume there will be significant intercept 

variation (00) or between-group slope variation (11) so modeling often begins with variance 

decomposition of intercept variance (see Bryk & Raudenbush, 1992; Hofmann, 1997). If 00 does 

not differ by more than chance levels, there may be little reason to use mixed-effects models as 

simpler OLS models will suffice (though see Bliese et al., 2018 who argue that there is virtually 

no downside to estimating mixed-effect models even when If 00 is small or non-significant 

because in these cases the mixed-effect models just return the OLS estimates). Note that if slopes 

randomly vary (11) even if intercepts (00) do not, there may still be reason to estimate mixed-

effects models (see Snijders & Bosker, 1999). 

In Step 1, we first examine the group-level properties of the outcome variable to estimate the 

ICC(1) (commonly referred to simply as the ICC in mixed-effect models). Second, we determine 

whether the variance of the intercept (00) is significantly larger than zero. 

These two aspects of the outcome variable are examined by estimating an unconditional 

means or null model. An unconditional means model does not contain any predictors but 

includes a random intercept variance term for groups. The model estimates how much variability 

there is in mean Y values (i.e., how much variability there is in the intercept) relative to the total 

variability. In the two stage HLM notation, the model is: 

 

Yij = 0j+rij        

0j = 00 + u0j        

In combined form, the model is:  Yij =00 + u0j+rij.  The null model states that the dependent 

variable is a function of a common intercept 00, and two error terms: the between-group error 

term, u0j, and the within-group error term, rij.  The model essentially states that any Y value can 

be described in terms of an overall mean plus some error associated with group membership and 

some individual error. A summary of the variance components of the null model provides two 

estimates of variance; 00 associated with u0j reflecting the variance in how much each groups’ 

intercept varies from the overall intercept (00), and 2 associated with rij reflecting how much 

each individual’s score differs from the group mean. Bryk and Raudenbush (1992) note that the 

null model is directly equivalent to a one-way random effects ANOVA – an ANOVA model 

where one predicts the dependent variable as a function of group membership. 

We estimate the unconditional means model and other mixed-effects models using the lme 

(for linear mixed effects) function in the nlme package (see Pinheiro & Bates, 2000).  There are 

two formulas that must be specified in any lme call:  a fixed effects formula and a random 

effects formula. 
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  In the unconditional means model, the fixed portion of the model is 00 (an intercept term) 

and the random component is u0j+rij.  The random portion of the model states that intercepts can 

vary among groups.  We begin the analysis by attaching the multilevel package (which also 

loads the nlme package) and making the bh1996 data set in the multilevel package 

available for analysis. 
 

> library(multilevel) 

> data(bh1996) 

> Null.Model<-lme(WBEING~1,random=~1|GRP,data=bh1996,  

     control=list(opt="optim")) 

In the model, the fixed formula is WBEING~1 indicating that the only predictor of well-being 

is an intercept term.  The model assumes that in the absence of any predictors, the best estimate 

of any specific outcome value is the mean value on the outcome. The random formula is 

random=~1|GRP which specifies that the intercept can vary as a function of group 

membership. A random intercept model is the most basic random formula, and in many 

situations a random intercept model may be all that is required to adequately account for the 

nested nature of the grouped data. The option control=list(opt="optim") in the call to 

lme instructs the program to use R’s general purpose optimization routine. Versions of lme 

after 2.2 default to nlmimb which has several advantages including better diagnostics when 

optimization fails. In practice, however, nlmimb tends to converge less often than the general 

purpose optimizater. Furthermore, the examples in this document were estimated under 

"optim", so for consistency we will revert back to the original optimizer. In practice, users 

likely want to use the default "nlmimb" optimizer; however, if models fail to converge it may 

be useful to revert to "optim".   

Estimating ICC.  The unconditional means model provides between-group and within-group 

variance estimates in the form of 00 and 2, respectively.  The formula for the ICC is 00/(00 + 

2) (see, Bryk & Raudenbush, 1992; Kreft & De Leeuw, 1998). Bliese (2000) notes that the ICC 

is equivalent to Bartko’s ICC(1) formula  (Bartko, 1976)  and to Shrout and Fleiss’s ICC(1,1) 

formula (Shrout & Fleiss, 1979).  The VarCorr function provides estimates of variance for an 

lme object. 
 

> VarCorr(Null.Model) 

GRP = pdSymm(1)  

            Variance   StdDev    

(Intercept) 0.03580079 0.1892110 

Residual    0.78949727 0.8885366 

> 0.03580079/(0.03580079+0.78949727) #Calculate ICC  

[1] 0.04337922 

The estimate of 00 (between-group or Intercept variance) is 0.036, and the estimate of 2 

(within-group or residual variancel) is 0.789.  The ICC estimate (00/(00 + 2)) is .04. 

To verify that the ICC results from the mixed-effects models are similar to those from an 

ANOVA model and the ICC1 function (see section 0) we can perform an ANOVA analysis on 

the same data. 
 

> tmod<-aov(WBEING~as.factor(GRP),data=bh1996) 

> ICC1(tmod) 



Multilevel Models in R  42 

[1] 0.04336905 

The ICC value from the mixed-effects model and the ICC(1) from the ANOVA model are 

similar although they will tend to differ if group sizes vary dramatically given that the ANOVA 

models assume equal group sizes.  

Determining whether 00 is significant.  Returning to our original analysis involving well-

being from the bh1996 data set, we would likely be interested in knowing whether the intercept 

variance (i.e.,00) estimate of 0.036 is significantly different from zero. In mixed-effects models, 

we perform this test by comparing –2 log likelihood values between (1) a model with a random 

intercept, and (2) a model without a random intercept. 

A model without a random intercept can be estimated using the gls function in the nlme 

package.  The –2 log likelihood values (i.e., Deviance) for an lme or gls object are obtained 

using the logLik function and multiplying the returned value by –2.  If the –2 log likelihood 

value for the model with the random intercept is significantly smaller than the model without the 

random intercept (based on a Chi-square distribution), then we conclude that the model with the 

random intercept fits the data significantly “better” than does the model without the random 

intercept. In the R, model contrasts are conducted using the anova function. 
 
> Null.gls<-gls(WBEING~1,data=bh1996,  

  control=list(opt="optim")) 

 

> logLik(Null.gls)*-2 

`log Lik.' 19536.17 (df=2) 

 

> logLik(Null.Model)*-2 

`log Lik.' 19347.34 (df=3) 

 

> 19536.17-19347.34 

[1] 188.83 

 

> anova(Null.gls, Null.Model) 

           Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

Null.gls       1  2 19540.17 19553.98 -9768.084                         

Null.Model     2  3 19353.34 19374.06 -9673.669 1 vs 2 188.8303  <.0001 

 

The –2 log likelihood value for the gls model without the random intercept is 19536.17. The 

difference of 188.8 is significant on a Chi-Squared distribution with one degree of freedom (one 

model estimated a variance term associated with a random intercept, the other did not, and this 

results in the one df difference).  These results indicate significant intercept variation. 

In summary, we would conclude that there is significant intercept variation in terms of general 

well-being scores across the 99 Army companies in our sample. We also estimate that 4% of the 

variation in individuals’ well-being score is a function of the group to which he or she belongs.  

Thus, a model that allows for random variation in well-being among Army companies is a better 

fit than a model that does not allow for this random variation. 

4.1.2 Step 2:  Explain Level 1 and 2 Intercept Variance   

At this point, we have two sources of variation that we can attempt to explain in subsequent 

modeling – within-group variation (2) and between-group intercept (i.e., mean) variation (00). 
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In many cases, these may be the only two sources of variation we are interested in explaining so 

let us begin by building a model that predicts these two sources of variation. 

In our running example, we assume that individual well-being is negatively related to 

individual reports of work hours. At the same time, however, we assume that average work hours 

in an Army Company are related to the average well-being of the Company over-and-above the 

individual-level work hours and well-being relationship. Using Hofmann and Gavin’s (1998) 

terminology, we are testing an incremental model where the level-2 variable predicts unique 

variance after controlling for level-1 variables. Our model is directly equivalent to the contextual 

model that we estimated in section 3.3.1 but we now use mixed-effect models rather than OLS 

regression. 

The form of the model using Bryk and Raudenbush’s (1992) notation is: 

  

 WBEINGij = 0j + 1j(HRSij)+rij      

         0j = 00 + 01(G.HRSj) + u0j     

1j = 10       

The first line indicates that individual well-being is a function of the groups’ intercept plus a 

component that reflects the linear effect of individual reports of work hours plus some random 

error.  The second line indicates that each groups’ intercept (mean) is a function of some 

common intercept (00) plus a component that reflects the linear effect of average group work 

hours plus some random between-group error. The third line states that the slope between 

individual work hours and well-being is fixed—it is not allowed to randomly vary across groups.  

Stated another way, we assume that the relationship between work hours and well-being varies 

by no more than chance levels among groups. 

When we combine the three rows into a single equation, we get an equation that looks like a 

common regression equation with an extra error term (u0j).  This error term indicates that 

WBEING intercepts (i.e., means) can randomly differ across groups.  The combined model is: 

 WBEINGij = 00 + 10(HRSij) + 01(G.HRSj) + u0j + rij     

This model is specified in lme as: 
 

> Model.1<-lme(WBEING~HRS+G.HRS,random=~1|GRP,data=bh1996, 

  control=list(opt="optim")) 

 

> summary(Model.1) 

Linear mixed-effects model fit by REML 

 Data: bh1996  

       AIC      BIC   logLik 

  19222.28 19256.81 -9606.14 

 

Random effects: 

 Formula: ~1 | GRP 

        (Intercept)  Residual 

StdDev:   0.1163900 0.8832353 

 

Fixed effects: WBEING ~ HRS + G.HRS  

                Value  Std.Error   DF   t-value p-value 

(Intercept)  4.740829 0.21368746 7282 22.185808  <.0001 

HRS         -0.046461 0.00488798 7282 -9.505056  <.0001 
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G.HRS       -0.126926 0.01940357   97 -6.541368  <.0001 

 Correlation:  

      (Intr) HRS    

HRS    0.000        

G.HRS -0.965 -0.252 

 

Standardized Within-Group Residuals: 

        Min          Q1         Med          Q3         Max  

-3.35320562 -0.65024982  0.03760797  0.71319835  2.70917777  

 

Number of Observations: 7382 

Number of Groups: 99  

 

Notice that work hours are significantly negatively related to individual well-being.  

Furthermore, after controlling the individual-level relationship, average work hours (G.HRS) are 

related to the average well-being in a group. The interpretation of this model, like the 

interpretation of the contextual effect model (section 3.3.1) indicates that the slope at the group-

level significantly differs from the slope at the individual level. Indeed, in this example, each 

hour increase at the group level is associated with a -.163 (-.046+-.127) decrease in average well-

being.  The coefficient of -.127 reflects the degree of difference between the two slopes. 

Importantly, in the mixed-effect model, the t-value for G.HRS is -6.54 whereas in the OLS 

model the t-value was upwardly biased at -10.06. 

In this basic model, we can also estimate how much of the variance was explained by these 

two predictors. Because individual work hours were significantly related to well-being, we 

expect that it will have “explained” some of the within-group variance 2. Similarly, since 

average work hours were related to the group well-being intercept we expect that it will have 

“explained” some of intercept variance, 00.  Recall that in the null model, the variance estimate 

for the within-group residuals, 2, was 0.789; and the variance estimate for the intercept, 00, was 

0.036. The VarCorr function on the Model.1 object reveals that each variance component 

has changed slightly. 
 

> VarCorr(Model.1) 

GRP = pdSymm(1)  

            Variance   StdDev    

(Intercept) 0.01354663 0.1163900 

Residual    0.78010466 0.8832353 

Specifically, the variance estimates from the model with the two predictors are 0.780 and 0.014.   

That is, the variance of the within-group residuals decreased from 0.789 to 0.780 and the 

variance of the between-group intercepts decreased from 0.036 to 0.014.  We can calculate the 

percent of variance explained by using the following formula: 

 Variance Explained = 1 – (Var with Predictor/Var without Predictor) 

To follow through with our example, work hours explained 1 – (0.780/0.789) or 0.011 (1%) 

of the within-group variance in 2, and group-mean work hours explained 1 – (0.014/0.036) or 

0.611 (61%) of the between-group intercept variance 00. While the logic behind variance 

estimates appears straightforward (at least in models without random slopes), the variance 

estimates should be treated with some degree of caution because they are partially dependent 
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upon how one specifies the models. Interested readers are directed to Snijders and Bosker (1994; 

1999) for an in-depth discussion of variance estimates. 

4.1.3 Step 3:  Examine and Predict Slope Variance   

Let us continue our analysis by trying to explain the third source of variation, namely, 

variation in our slopes (11, 12, etc.).  To do this, we examine another variable from bh1996.  

This variable represents Army Company members’ ratings of leadership consideration (LEAD).  

Generally, individual soldiers’ ratings of leadership are related to well-being.  In this analysis, 

however, we will consider the possibility that the strength of the relationship between individual 

ratings of leadership consideration and well-being varies among groups. 

We begin by examining slope variation among the first 25 groups using xyplot from the 

lattice package. 
 

> library(lattice) 

> xyplot(WBEING~LEAD|as.factor(GRP),data=bh1996[1:1582,], 

  type=c("p","g","r"),col="dark blue",col.line="black", 

  xlab="Leadership Consideration", 

  ylab="Well-Being") 
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From the plot of the first 25 groups in the bh1996 data set, it seems likely that there is some 

slope variation.  The plot, however, does not tell us whether this variation is significant. We 

begin our analysis of slope variability by adding leadership consideration to our model and 

testing whether there is significant variation in the leadership consideration and well-being 

slopes across groups. Our base model is: 

 

WBEINGij =  0j + 1j(HRSij)+ 2j(LEADij) + rij     

                 0j = 00 + 01(G.HRSj) + u0j     

                     1j = 10 

                              2j = 20 

The last two lines include that neither the slope for HRS or LEAD is allowed to vary across 

groups. In combined form the model is: 

WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) +  u0j + rij.  

The model specification in lme is: 

 
> Model.2<-lme(WBEING~HRS+LEAD+G.HRS,random=~1|GRP, data=bh1996, 

+                control=list(opt="optim")) 

 

> round(summary(Model.2)$tTable,digit=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  2.559     0.216 7281  11.859       0 

HRS         -0.028     0.004 7281  -6.317       0 

LEAD         0.496     0.013 7281  38.786       0 

G.HRS       -0.079     0.019   97  -4.185       0 

 

> VarCorr(Model.2) 

GRP = pdLogChol(1)  

            Variance   StdDev    

(Intercept) 0.01418026 0.1190809 

Residual    0.64704412 0.8043905 

  

Across the sample, individuals’ perceptions of leadership have a strong, positive relationship 

to their well-being. To determine whether the strength of this relationship differs across groups, 

we need to estimate a model with a random slope for LEAD. This alternative model is: 

 

    WBEINGij =  0j + 1j(HRSij)+ 2j(LEADij) + rij     

                 0j = 00 + 01(G.HRSj) + u0j     

                     1j = 10 

                              2j = 20 + u2j 

The last line indicates that the slope between leadership consideration and well-being for any 

specific group is a function of a common slope 20 and a group-specific error term u2j. The 

variance term associated with u2j is 12. In this model, we have not permitted the slope between 

individual work hours and individual well-being to vary across groups. 

In combined form the model is: 



Multilevel Models in R  47 

 WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) +  u0j + u2j * LEADij + rij. 

The model specification in lme and the relevant changes to the variance components are: 

 
> Model.2a<-lme(WBEING~HRS+LEAD+G.HRS,random=~LEAD|GRP, data=bh1996, 

+                control=list(opt="optim")) 

 

> VarCorr(Model.2a) 

GRP = pdLogChol(LEAD)  

            Variance   StdDev    Corr   

(Intercept) 0.14401197 0.3794891 (Intr) 

LEAD        0.01044352 0.1021935 -0.97  

Residual    0.64129330 0.8008079        

 

Changing the random component to (random=~LEAD|GRP) produces an estimate of the 

slope variance, 12, (.01) and an estimate of the correlation between the intercept and slope (-.97). 

To test whether this model provides significantly better fit, we test the –2 log likelihood ratios 

between a model with and a model without a random slope for leadership consideration and 

well-being. 
 

> anova(Model.2,Model.2a) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

Model.2      1  6 17862.68 17904.12 -8925.341                         

Model.2a     2  8 17838.58 17893.83 -8911.290 1 vs 2 28.10254  <.0001 

 

This comparison test is known to be conservative and we could halve the p-value (LaHuis & 

Ferguson, 2009), but even so the difference of 28.10 is significant on two degrees of freedom. 

The -2 log likelihood results indicate the model with the random effect for the leadership 

consideration and well-being slope provides a significantly better fit than the model without this 

random effect implying that the strength of the slope differs across groups. 

Another way to consider the differences between the two models is to examine the empirical 

Bayes’ estimates for each group. The values for the first five groups with the random intercept 

model are: 

 
> coef(Model.2)[1:5,] 

  (Intercept)         HRS      LEAD       G.HRS 

1    2.534036 -0.02827849 0.4956385 -0.07900961 

2    2.694639 -0.02827849 0.4956385 -0.07900961 

3    2.458733 -0.02827849 0.4956385 -0.07900961 

4    2.764899 -0.02827849 0.4956385 -0.07900961 

5    2.616261 -0.02827849 0.4956385 -0.07900961 

 

In this specification, group 4 has the highest level of well-being, and group 3 has the lowest, but 

these intercept (mean) differences are the only model parameters varying across groups. The 

slopes match the values from the summary of the t-table presented previously. In contrast, the 

empirical Bayes’ estimates for model with the random slope are: 
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> coef(Model.2a)[1:5,] 

  (Intercept)         HRS      LEAD       G.HRS 

1    2.195403 -0.02847764 0.5715939 -0.07050472 

2    2.839074 -0.02847764 0.4071772 -0.07050472 

3    2.398461 -0.02847764 0.4910177 -0.07050472 

4    2.846874 -0.02847764 0.4247142 -0.07050472 

5    2.608235 -0.02847764 0.4679652 -0.07050472 

 

In this specification, the slope indicated the strength of the relationship between individuals’ 

perceptions of leadership consideration and their well-being also varies by group. In group 1, the 

relationship between the two variables is stronger (.57) than in group 2 (.41). 

Given significant variation in the leadership and well-being slope, we can attempt to see what 

group-level properties are related to this variation. We propose that when groups are under a lot 

of strain from work requirements, the relationship between leadership consideration and well-

being will be relatively strong. In contrast, when groups are under little strain, we expect a 

relatively weak relationship between leadership consideration and well-being. Our proposition 

represents a contextual effect in an occupational stress model (see Bliese & Jex, 2002). 

Our proposition represents a cross-level interaction where the slope between individuals’ 

perceptions of leadership consideration and their ratings of well-being varies as a function of the 

level-2 variable of group work demands.  In mixed-effects models, we test this hypothesis by 

examining whether a level-2 variable explains a significant amount of the level-1 slope variation 

among groups. In our example, we test whether average work hours in the group “explains” 

group-by-group variation in the relationship between individual perceptions of leadership 

consideration and individual reports of well-being. In Bryk and Raudenbush’s (1992) notation, 

the model that we are testing is: 

 

  WBEINGij = 0j + 1j(HRSij)+ 2j(LEADij) + rij      

           0j = 00 + 01(G.HRSj) + u0j     

                 1j = 10 

           2j = 20 +21(G.HRSj) + u2j     

In combined form the model is: 

WBEINGij = 00 + 10(HRSij) + 20(LEADij) + 01(G.HRSj) + 21(LEADij * G.HRSj)  + u0j + 

u2j *LEADij + rij. 

In lme, we specify the cross-level interaction by adding an interaction term between leadership 

(LEAD) and average group work hours (G.HRS).  Specifically, the model is: 
 

> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 

random=~LEAD|GRP,data=bh1996,control=list(opt="optim")) 

 

> round(summary(Final.Model)$tTable,dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  3.654     0.726 7280   5.032   0.000 

HRS         -0.029     0.004 7280  -6.391   0.000 

LEAD         0.126     0.217 7280   0.578   0.564 

G.HRS       -0.175     0.064   97  -2.751   0.007 
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LEAD:G.HRS   0.032     0.019 7280   1.703   0.089 

 

The tTable results from the final model indicate there is a significant cross-level interaction 

(the last row using a liberal p-value of less than .10).  This result indicates that average work 

hours “explained” a significant portion of the variation in 12 – the vertical cohesion and well-

being slope. 

4.1.4 Step 3 using the lme4 Package and Interaction Plot 

To plot the form of the interaction and make use of the graphics capabilities of ggplot2, we 

can use the lme4 package and rerun the model using lmer. The code also uses the lmerTest 

package for p-values and degrees of freedom and changes the optimizer because the default 

failed to converge. 

 
> library(lme4) 

> library(lmerTest) 

 

> Model.2b<-lmer(WBEING~HRS+LEAD*G.HRS+(LEAD|GRP), data=bh1996, 

+                control=lmerControl(optimizer = "Nelder_Mead")) 

 

> summary(Model.2b)$coef 

               Estimate  Std. Error         df   t value     Pr(>|t|) 

(Intercept)  3.64325839 0.732553188   87.67621  4.973370 3.243398e-06 

HRS         -0.02855876 0.004468026 7287.99657 -6.391807 1.740410e-10 

LEAD         0.12894421 0.218811339   89.83115  0.589294 5.571432e-01 

G.HRS       -0.17401949 0.064152902   87.45942 -2.712574 8.038535e-03 

LEAD:G.HRS   0.03216543 0.019187381   89.79663  1.676384 9.714129e-02 

 

With a lmer model, we can use the interactions library and the following code to plot values 

for group averages of 7 hours versus 12 hours of work.  

 
library(interactions) 

library(ggplot2) 

win.graph(height=4.75,width=6) #quartz() for MAC 

 

interact_plot(Model.2b,pred=LEAD,modx=G.HRS, 

              modx.values = c(7,12), 

              x.label = "Leadership Consideration", 

              y.label = "Well-Being", 

              legend.main="Group Work Hours")+ 

  theme_bw()+ 

  theme(legend.background=element_rect(fill="white", 

                   size=0.5, linetype="solid",color ="black"), 

        legend.position = c(0.5, 0.2), 

        axis.title.x = element_text(color="black", size=14), 

        axis.title.y = element_text(color="black", size=14), 

        legend.title = element_text(color="black", size=14), 

        legend.text = element_text(color="black", size=14) 

  ) 

 

ggsave(filename = "c:\\temp\\plotgg.jpg", 
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       device = "jpeg") 

 

 

Soldiers’ perceptions of leadership consideration are positively related to their well-being 

regardless of the group average work hours. The relationship between individuals’ ratings of 

leadership consideration and their well-being is stronger (steeper slope) in groups with high work 

hours than in groups with low work hours. Another way to think about the interaction is to note 

that well-being really drops (in relative terms) when a soldier perceives that leadership is low in 

consideration and one is a member of a group with high average work hours. This pattern 

supports our proposition that considerate leadership is relatively more important in a high work 

demand context. 

4.2 Plotting with interaction.plot 

The previous example used the lme4, interactions, and ggplot2 library to make a publication 

quality plot. A quick alternative is to use the interaction.plot function illustrated below. 

 
> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 

  random=~LEAD|GRP,data=bh1996,control=list(opt="optim")) 

 

> TDAT<-data.frame(HRS=c(11.2987,11.2987,11.2987,11.2987), 

                     LEAD=c(2.12,2.12,3.66,3.66), 

                     G.HRS=c(7, 12, 7, 12), 

                     GRP=c(1,1,1,1)) 

 

> TDAT$WBEING<-predict(Final.Model,TDAT,level=1) 

> with(TDAT,interaction.plot(LEAD,G.HRS,WBEING)) 
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4.3 Some Notes on Centering 

In multilevel modeling, centering issues is a major consideration. In our examples, we have 

used raw variables as predictors.  In some cases, though, there may be good reasons to consider 

centering the level-1 variables with one of two centering options. 

Level-1 variables such as leadership can be grand-mean centered or group-mean centered.  

Grand-mean centering is often worth considering because doing so helps reduce multicollinearity 

among predictors and random effect terms.  In cases where interactive terms are included, grand-

mean centering can be particularly helpful in reducing correlations between main-effect and 

interactive terms. Hofmann and Gavin (1998) and others have shown that grand-mean centered 

and raw variable models produce identical results for the predictors; however, grand-mean 

centered models may converge in situations where a model based on raw variables will not.  

Grand-mean centering can be accomplished in one of two ways. The explicit way is to 

subtract the overall mean from the raw variable. The less obvious way is to use the scale 

function. The scale function is used to standardize (mean=0, sd=1) variables, but can also be 

used to grand-mean center if the scale=FALSE option is selected.  Below I create grand-mean 

centered variables for leadership both ways. 
 

> bh1996$GRAND.CENT.LEAD<-bh1996$LEAD-mean(bh1996$LEAD) 

> bh1996$GRAND.CENT.LEAD<-scale(bh1996$LEAD,scale=FALSE) 

Group-mean centering (demeaning) is another centering option with level-1 variables. In 

group-mean centering, each individual score is subtracted from the group mean. Review section 

3.1 and the aggregate and merge functions for assigning a group-mean variable back to each 

individual. Once a group mean is assigned back to the individual, simply subtract the group 

mean from the raw score. A group-mean centered variable reflects how much an individual 

differs from their group average. Group-mean centering represents a different parameterization 

of the model than does the raw or grand-mean centered version (Hofmann & Gavin, 1998; Hox, 

2002; Snijders & Bosker, 1999).  



Multilevel Models in R  52 

4.3.1.1 Centering and Cross-Level Interactions  

There is value in using group-mean centering when testing a cross-level interaction. Bryk and 

Raudenbush (1992) and Hofmann and Gavin (1998) point out that group-mean centering 

provides the “purest” estimate of the within-group slope in these situations. That is, slope 

estimates based on raw variables and grand-mean centered variables can be partially influenced 

by between-group factors.  In contrast, group-mean centered variables have had between-group 

effects removed. Bryk and Raudenbush (1992) show that group-level interactions can sometimes 

pose as cross-level interactions, so a logical strategy is to use raw or grand-mean centered 

variables to test for cross-level interactions but verify the final results with group-mean centered 

variables. 

The bh1996 dataframe has group-mean centered variables for all the predictors beginning 

with a "W" for "within". For comparisons, the first model uses a raw leadership variable and the 

second model below uses the group-mean centered leadership variable in both the fixed part of 

the model and in the random statement. 
 

> Final.Model<-lme(WBEING~HRS+LEAD+G.HRS+LEAD:G.HRS, 

+                  random=~LEAD|GRP,data=bh1996, control=list(opt="optim")) 

> round(summary(Final.Model)$tTable,dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  3.654     0.726 7280   5.032   0.000 

HRS         -0.029     0.004 7280  -6.391   0.000 

LEAD         0.126     0.217 7280   0.578   0.564 

G.HRS       -0.175     0.064   97  -2.751   0.007 

LEAD:G.HRS   0.032     0.019 7280   1.703   0.089 

 

> Final.Model.R<-lme(WBEING~HRS+W.LEAD+G.HRS+W.LEAD:G.HRS, 

+             random=~W.LEAD|GRP,data=bh1996, control=list(opt="optim")) 

> round(summary(Final.Model.R)$tTable,dig=3) 

              Value Std.Error   DF t-value p-value 

(Intercept)   4.733     0.214 7280  22.080   0.000 

HRS          -0.028     0.004 7280  -6.271   0.000 

W.LEAD        0.055     0.223 7280   0.249   0.804 

G.HRS        -0.145     0.019   97  -7.471   0.000 

W.LEAD:G.HRS  0.040     0.020 7280   2.037   0.042 

 

Notice that the cross-level interaction is now significant with a t-value of 2.037 versus 1.703 

in the model with raw variable. Thus, there are some minor differences between the two model 

specifications, but it would appear there is a significant cross-level interaction (p<.05) in the pure 

specification. For an interesting example of trying to determine whether cohesion buffering 

effects are cross-level or group-mean interactions see Campbell-Sills et al., (2022). 

4.3.1.2 Centering and Contextual Models 

Centering choice also has important implications for interpreting contextual models. When 

contextual models are based on raw level-1 variables, the level-2 coefficient represents the 

difference between the two slopes. In contrast, when the level-1 variable is group-mean centered, 

the level-2 coefficient captures the total effect (the level-1 slope plus any difference) and tests 

whether this total effect is different from zero. Below are the two models. 
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> tmod.raw<-lme(WBEING~HRS+G.HRS,random=~1|GRP,bh1996) 

> round(summary(tmod.raw)$tTable, dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  4.741     0.214 7282  22.187       0 

HRS         -0.046     0.005 7282  -9.505       0 

G.HRS       -0.127     0.019   97  -6.542       0 

>  

> tmod.cent<-lme(WBEING~W.HRS+G.HRS,random=~1|GRP,bh1996) 

> round(summary(tmod.cent)$tTable, dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept)  4.741     0.214 7282  22.187       0 

W.HRS       -0.046     0.005 7282  -9.505       0 

G.HRS       -0.173     0.019   97  -9.234       0 

 

The first model indicates that the G.HRS slope is -0.127 stronger than the within slope of -

0.046. The model represents a relative test. The second model tests whether the total between-

group slope of -0.173 differs from zero. It is relatively common for researchers to make errors 

when interpreting these two variants of the model (see Bliese et al., 2018). 

4.4 Estimating Group-Mean Reliability (ICC2) with gmeanrel  

In mixed-effects models, it is possible to obtain an estimate of the group-mean reliability 

analogous to the ICC(2) (see section 3.2.7). Group mean reliability estimates are a function of 

the ICC and group size (see Bliese, 2000; Bryk & Raudenbush, 1992), and the gmeanrel 

function from the multilevel package calculates the ICC, the group size, and the group mean 

reliability for each group. 

The code below illustrates the gmeanrel function on the bhr2000 data set to show how 

the results compare to results in section 3.2.7 where the ICC(1) estimate from the ANOVA 

model was 0.174 and the ICC(2) estimate was 0.920. 

 
> Null.Model<-lme(HRS~1,random=~1|GRP,data=bhr2000, 

  control=list(opt="optim")) 

 

> GREL.DAT<-gmeanrel(Null.Model) 

> names(GREL.DAT) 

[1] "ICC"     "Group"   "GrpSize" "MeanRel" 

 

> GREL.DAT$ICC  #ICC estimate 

[1] 0.177544 

 

> GREL.DAT$MeanRel[1:20] #First 20 Reliability Estimates 

 [1] 0.9272005 0.9066657 0.9471382 0.8487743 0.9465280 

 [6] 0.7754791 0.7953197 0.8192754 0.8699945 0.8831157 

[11] 0.8119385 0.8622636 0.9379303 0.9452644 0.9260382 

[16] 0.8487743 0.9395503 0.9315061 0.8622636 0.9235985 

 

> mean(GREL.DAT$MeanRel)  

[1] 0.8955047 

 

The ICC estimate is 0.178 (the same as the value produced by mult.icc in section 3.2.8) 

and slightly higher than the ANOVA based estimate of 0.174. The average group-mean 
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reliability from gmeanrel is 0.896 which is smaller (but close) to the value of 0.920 from the 

ANOVA model. The output also illustrates that each group receives a separate estimate of group-

mean reliability. Values vary as a function of group size. 

5 Growth Modeling Repeated Measures Data 

Growth models are an important variation of multilevel models (see section 4). In growth 

models repeated observations from an individual represent the level-1 variables, and the 

attributes of the individual represent the level-2 variables. The fact that the level-1 variables are 

repeated over time poses some additional analytic issues; however, the steps used to analyze the 

basic growth model and the steps used to analyze a multilevel model share many key similarities. 

This chapter begins by briefly reviewing some of the methodological challenges associated 

with growth modeling. Following this, the chapter illustrates how data must be configured to 

conduct growth modeling. Finally, the chapter illustrates a complete growth modeling analysis 

using the nlme package. Much of this material is adapted from Bliese and Ployhart (2002). 

5.1 Methodological challenges 

Since longitudinal data is collected from single entities over multiple times, it is likely that 

there will be a high degree of non-independence in the responses. Multiple responses from an 

individual will tend to be related by virtue of being provided by the same person, and this non-

independence violates the statistical assumption of independence underlying many common data 

analytic techniques (Kenny & Judd, 1986).  

Issues about non-independence are similar to those that occur when working with lower-level 

data nested in higher-level groups. In longitudinal designs, however, there are additional 

complications associated with the lower-level responses. First, it is likely that responses 

temporally close to each other (e.g., responses 1 and 2) will be more strongly related than 

responses temporally far apart (e.g., responses 1 and 4). This pattern is defined as a simplex 

pattern or lag 1 autocorrelation in the residuals. Second, it is likely that responses will tend to 

become either more variable over time or less variable over time. For instance, individuals 

starting jobs may initially have a low degree of variability in performance, but over time the 

variance in job performance may increase.  In statistical terms, outcome variables in longitudinal 

data are likely to display heteroscedasticity. To obtain correct standard errors and to draw the 

correct statistical inferences, autocorrelation, and heteroscedasticity both need to be incorporated 

into the statistical model. 

The need to test for both autocorrelation and heteroscedasticity in growth models arises 

because the level-1 variables (repeated measures from an individual) are ordered by time.  One 

of the main differences between growth models and multilevel models revolves around 

understanding how to properly account for time in both the statistical models and in the data 

structures. 

In R, growth modeling can be estimated using the lme function from the nlme package 

(Pinhiero & Bates, 2000). The lme function is the same function used in multilevel modeling 

(see section 4); however, the nlme package has a variety of options available for handling 

autocorrelation and heteroscedasticity in growth models. 
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Before conducting growth modeling, the data has to be set up in a way that explicitly includes 

time as a variable. This data transformation is referred to as changing a data set from multivariate 

to stacked, long, or univariate form. In the next section, we show how to create a dataframe for 

growth modeling. 

5.2 Data Structure and the make.univ Function 

Often data are stored in a format where each row represents observations from one individual.  

For instance, an individual might provide three measures of job satisfaction in a longitudinal 

study, and the data might be arranged in multivariate form such that column 1 is the subject 

number; column 2 is job satisfaction at time 1; column 3 is job satisfaction at time 2, and column 

4 is job satisfaction at time 3, etc. 

The univbct dataframe in the multilevel library allows us to illustrate a common way of 

storing repeated measures data. This data set contains three measures taken six-months apart on 

three variables – job satisfaction, commitment, and readiness.  It also contains some stable 

individual characteristics such as respondent gender, marital status and age at the initial data 

collection time.  These latter variables are treated as level-2 predictors in subsequent modeling. 

The univbct dataframe is already in univariate form; however, for the purposes of 

illustration, we will select a subset of the entire univbct dataframe and transform it back into 

multivariate form. With this subset we will illustrate how to convert a typical multivariate 

dataframe back into the univariate form necessary for growth modeling. 

 
> library(multilevel) 

> data(univbct) 

> names(univbct) 

 [1] "BTN"     "COMPANY" "MARITAL" "GENDER"  "HOWLONG" "RANK"    "EDUCATE" 

 [8] "AGE"     "JOBSAT1" "COMMIT1" "READY1"  "JOBSAT2" "COMMIT2" "READY2"  

[15] "JOBSAT3" "COMMIT3" "READY3"  "TIME"    "JSAT"    "COMMIT"  "READY"   

[22] "SUBNUM"  

> nrow(univbct) 

[1] 1485 

> length(unique(univbct$SUBNUM)) 

[1] 495 

These commands indicate there are 1485 rows in the data set representing 495 individuals so 

each individual provides three rows of data.  To create a multivariate data set out of the 

univbct dataframe, we can select the first row for each participant in the univbct dataframe.  

In this illustration we restrict our analyses to the three job satisfaction scores and to respondent 

age at the initial data collection period. 
 

> GROWDAT<-univbct[!duplicated(univbct$SUBNUM),c(22,8,9,12,15)]   

> GROWDAT[1:3,] 

  SUBNUM AGE  JOBSAT1 JOBSAT2 JOBSAT3 

1      1  20 1.666667       1       3 

4      2  24 3.666667       4       4 

7      3  24 4.000000       4       4 
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The dataframe GROWDAT now contains data from 495 individuals. The first individual was 20 

years old at the first data collection time.  At time 1, the first individual’s job satisfaction score 

was 1.67; at time 2 it was 1.0, and at time 3 it was 3.0. 

Because the univbct dataframe in the multilevel package was already in univariate form, 

we illustrated the additional steps of converting it back to multivariate form. From a practical 

standpoint, though, the important issue is that the GROWDAT dataframe now represents a typical 

multivariate data set containing repeated measures. Specifically, the GROWDAT dataframe 

contains one row of information for each subject, and the repeated measures (job satisfaction) are 

represented by three different variables. 

From a growth modeling perspective, the key problem with multivariate dataframes like 

GROWDAT is that they do not contain a variable that indexes time. That is, we know time is an 

attribute of this data because we have three different measures of job satisfaction; however, 

analytically we have no way of explicitly modeling time in the multivariate form of the data.  

Therefore, it is critical to create a new variable that explicitly indexes time which requires 

transforming the data to univariate or a stacked format. 

The make.univ function from the multilevel package provides a simple way to perform this 

transformation.  Two arguments are required (x and dvs), and two are optional (tname and 

outname).  The first required argument is the dataframe in multivariate or wide format.  The 

second required argument is a subset of the entire dataframe identifying the columns containing 

the repeated measures.  The second required argument must be time-sorted -- column 1 must be 

time 1, column 2 must be time 2, and so on.  The two optional arguments control the names of 

the two created variables:  tname defaults to "TIME" and outname defaults to "MULTDV". 

  For instance, to convert GROWDAT into univariate form we issue the following command: 
 

> UNIV.GROW<-make.univ(GROWDAT,GROWDAT[,3:5]) 

> UNIV.GROW[1:9,] 

    SUBNUM AGE  JOBSAT1 JOBSAT2 JOBSAT3 TIME   MULTDV 

1        1  20 1.666667       1       3    0 1.666667 

1.1      1  20 1.666667       1       3    1 1.000000 

1.2      1  20 1.666667       1       3    2 3.000000 

4        2  24 3.666667       4       4    0 3.666667 

4.1      2  24 3.666667       4       4    1 4.000000 

4.2      2  24 3.666667       4       4    2 4.000000 

7        3  24 4.000000       4       4    0 4.000000 

7.1      3  24 4.000000       4       4    1 4.000000 

7.2      3  24 4.000000       4       4    2 4.000000 

   

Note that each individual now has three rows of data indexed by the variable “TIME”.   Time 

ranges from 0 to 2.  To facilitate model interpretation, the first time is coded as 0 instead of as 1.  

Doing so allows one to interpret the intercept in subsequent models as the level of job 

satisfaction at the initial data collection time. Second, notice that the make.univ function has 

created a variable called “MULTDV”.  This variable represents the multivariate dependent 

variable.  The variable “TIME” and the variable “MULTDV” are two of the primary variables 

used in growth modeling.  Finally, notice that AGE, SUBNUM and the values for the three job 

satisfaction variables were repeated three times for each individual.  By repeating the individual 

variables, the make.univ function has essentially created a dataframe with level-2 variables in 
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the proper format.  For instance, subject age can now be used as a level-2 predictor in subsequent 

modeling. 

In many cases, one may have only one dependent variable that needs to be converted into 

univariate or stacked format and therefore the make.univ function will suffice. If, however, it 

is necessary to create a univariate dataframe with multiple variables indexed by time, the 

mult.make.univ function in the multilevel package is available as is the reshape 

function in the base R program (see help files).  

5.3 Growth Modeling Illustration 

With the data in univariate form, we can begin to visually examine whether we see patterns 

between time and the outcome.  For instance, the commands below use the lattice package to 

produce a plot of the first 30 individuals: 

 
>library(lattice) 

>xyplot(MULTDV~TIME|as.factor(SUBNUM),data=UNIV.GROW[1:90,], 

 type=c("p","r","g"),col="blue",col.line="black", 

 xlab="Time",ylab="Job Satisfaction") 

 

From this plot, it appears as though there is considerable variability both in overall levels of 

job satisfaction and in how job satisfaction changes over time. The goal in growth modeling is to 

determine whether we can find consistent patterns in the relationship between time and job 
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satisfaction. Therefore, we are now ready to illustrate growth modeling in a step-by-step 

approach.  In this illustration, we follow the model comparison approach outlined by Bliese and 

Ployhart (2002) and in also discussed in Ployhart, Holtz and Bliese (2002). 

As an overview of the steps, the basic procedure is to start by examining the nature of the 

outcome. Much as we did in multilevel modeling, we are interested in estimating the ICC and 

determining whether the outcome (job satisfaction) randomly varies among individuals.  Second, 

we are interested in examining the form of the relationship between time and the outcome.  

Basically, we want to know whether the outcome generally increases, decreases, or shows some 

other type of relationship with time.  The plot of the first 30 individuals shows no clear pattern in 

how job satisfaction is changing over time, but the analysis might identify an overall trend 

among the 495 respondents.  Third, we attempt to determine whether the relationship between 

time and the outcome is constant among individuals or whether it varies on an individual-by-

individual basis.  Fourth, we model in more complicated error structures such as autocorrelation, 

and finally we add level-2 predictors of intercept and slope variances. 

5.3.1 Step 1:  Examine the DV 

  The first step in growth modeling is to examine the properties of the dependent variable by 

estimating a null model and calculating the ICC. 

 
> null.model<-lme(MULTDV~1,random=~1|SUBNUM,data=UNIV.GROW, 

na.action=na.omit, control=list(opt="optim")) 

 

> VarCorr(null.model) 

SUBNUM = pdLogChol(1)  

            Variance  StdDev    

(Intercept) 0.4337729 0.6586144 

Residual    0.4319055 0.6571952 

 

> 0.4337729/(0.4337729+0.4319055) 

[1] 0.5010786 

In our example, the ICC associated with job satisfaction is .50 indicating that 50% of the 

variance in any individual report of job satisfaction can be explained by the properties of the 

individual who provided the rating. Another way to think about this is that individuals tend to 

remain consistent in ratings over time (a person who has high job satisfaction at one time will 

then to have high job satisfaction at other times). At the same time, an ICC of .50 is low enough 

to allow for within-person change over time. In practice, ICC values between .30 and .70 tend to 

be good when modeling change over time. 

5.3.2 Step 2:  Model Time    

Step two involves modeling the fixed relationship between time and the dependent variable. 

In almost all cases, it is logical to begin by modeling a linear relationship and progressively add 

more complicated relationships such as quadratic, cubic, etc.  To test whether there is a linear 

relationship between time and job satisfaction, we regress job satisfaction on time in a model 

with a random intercept. 
 

> model.2<-lme(MULTDV~TIME,random=~1|SUBNUM,data=UNIV.GROW, 

na.action=na.omit,control=list(opt="optim")) 

> summary(model.2)$tTable 
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                 Value  Std.Error  DF   t-value    p-value 

(Intercept) 3.21886617 0.04075699 903 78.977040 0.00000000 

TIME        0.05176461 0.02168024 903  2.387640 0.01716169  

Results indicate a significant linear relationship between time and job satisfaction such that 

job satisfaction increases by .05 each time period. Because the first time period was coded as 0, 

the intercept value of 3.22 represents the average level of job satisfaction at the first time period.  

More complicated time functions can be included in one of two ways – either through raising 

the time variable to various powers, or by converting time into power polynomials. Both 

techniques are illustrated. 

 
> model.2b<-lme(MULTDV~TIME+I(TIME^2),random=~1|SUBNUM, 

data=UNIV.GROW,na.action=na.omit,control=list(opt="optim")) 

 

> summary(model.2b)$tTable 

                  Value  Std.Error  DF    t-value   p-value 

(Intercept)  3.23308157 0.04262697 902 75.8459120 0.0000000 

TIME        -0.03373846 0.07816572 902 -0.4316273 0.6661154 

I(TIME^2)    0.04276425 0.03756137 902  1.1385167 0.2552071 

 

> model.2c<-lme(MULTDV~poly(TIME,2),random=~1|SUBNUM, 

data=UNIV.GROW,na.action=na.omit,control=list(opt="optim")) 

> summary(model.2c)$tTable 

                   Value Std.Error  DF   t-value    p-value 

(Intercept)    3.2704416 0.0346156 902 94.478836 0.00000000 

poly(TIME, 2)1 1.5778835 0.6613714 902  2.385775 0.01724863 

poly(TIME, 2)2 0.7530736 0.6614515 902  1.138517 0.25520707 

  

Neither model finds evidence of a significant quadratic trend. Note that a key advantage of the 

power polynomials is that the linear and quadratic effects are orthogonal. Consequently, in the 

second model the linear effect of time is still significant even with the quadratic effect in the 

model so only one model needs to be estimated to identify both the linear and quadratic effects. 

When squaring time, it is important to run the linear model before running the model with both 

the linear and quadratic effect to ensure that the linear effect is identified. 

5.3.3 Step 3:  Model Slope Variability 

A potential limitation with model 2 is that it assumes that the relationship between time and 

job satisfaction is constant for all individuals. Specifically, it assumes that each individual 

increases job satisfaction by .05 points at each time. An alternative model is one that allows 

slopes to vary. Given the degree of variability in the graph of the first 30 respondents, a random 

slope model seems like a plausible alternative. The random slope model is tested by adding the 

linear effect for time as a random effect. In the running example, we can update model.2 by 

adding a different random effect component and contrast model 2 and model 3. 
 

> model.3<-update(model.2,random=~TIME|SUBNUM) 

> anova(model.2,model.3) 

        Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

model.2     1  4 3461.234 3482.194 -1726.617                         

model.3     2  6 3434.132 3465.571 -1711.066 1 vs 2 31.10262  <.0001 
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The results show that a model that allows the slope between time and job satisfaction to vary 

across individuals fits the data better than a model that fixes the slope to be a constant value. In 

cases where higher-level trends were also significant, one would also be interested in 

determining whether allowing the slopes of the higher-level variables to randomly vary also 

improved model fit. For instance, one might find that a quadratic relationship varied in strength 

among individuals. 

5.3.4 Step 4:  Modeling Error Structures 

The fourth step in developing the level-1 model involves assessing the error structure of the 

model. It is important to scrutinize the level-1 error structure because significance tests may be 

affected if error structures are not properly specified. The goal of step 4 is to determine whether 

one’s model fit improves by incorporating (a) an autoregressive structure with serial correlations 

and (b) heterogeneity in the error structures. 

Tests for autoregressive structure (autocorrelation) are conducted by including the 

correlation option in lme.  For instance, we can update model.3 and include lag 1 

autocorrelation as follows: 
 

> model.4a<-update(model.3,correlation=corAR1()) 

> anova(model.3,model.4a) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

model.3      1  6 3434.132 3465.571 -1711.066                         

model.4a     2  7 3429.771 3466.451 -1707.886 1 vs 2 6.360465  0.0117 

A model that allows for autocorrelation fits the data better than does a model that assumes no 

autocorrelation.  A summary of model 4a reveals that the autocorrelation estimate is .367 (see the 

Phi coefficient). 
 

> summary(model.4a) 

Linear mixed-effects model fit by REML 

 Data: UNIV.GROW  

       AIC      BIC    logLik 

  3429.771 3466.451 -1707.886 

..... 

Correlation Structure: AR(1) 

 Formula: ~1 | SUBNUM  

 Parameter estimate(s): 

      Phi  

0.3676831  

It is important to note that the use of correlation=corAR1() in the default mode 

assumes data is structured such that time increases for each individual. Stacked data created 

using make.univ has this structure.  If data are imported or otherwise manipulated so that this 

order is not maintained, it will be necessary either to re-order the dataframe or to specify the 

structure to corAR1() with more detail (see help files).  For example, if the rows in 

GROW.UNIV are randomly ordered, the estimate for AR 1 changes: 
 

> UNIV.GROW2<-UNIV.GROW[order(rnorm(1485)),] 

> UNIV.GROW2[1:10,] 

       SUBNUM AGE  JOBSAT1  JOBSAT2  JOBSAT3 TIME   MULTDV 

6           2  24 3.666667 4.000000 4.000000    0 3.666667 

285.2      93  20 2.333333 3.000000 3.000000    2 3.000000 
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339.2     109  33 3.666667 3.000000 3.333333    2 3.333333 

228        74  23 5.000000       NA 5.000000    0 5.000000 

894       294  37 4.000000 4.000000 4.000000    0 4.000000 

1029.1    339  20 3.000000 3.333333 3.000000    1 3.333333 

1416      468  20 3.333333 3.333333 3.666667    0 3.333333 

696.2     228  19 4.000000 2.666667 3.333333    2 3.333333 

735.1     241  25 3.666667 3.000000 3.000000    1 3.000000 

51         17  20 3.666667 3.000000 3.000000    0 3.666667 

 

> tmod<-lme(MULTDV~TIME,random=~1|TIME,na.action=na.omit, 

data=UNIV.GROW2,corAR1()) 

 

> summary(tmod) 

Linear mixed-effects model fit by REML 

 Data: UNIV.GROW2  

       AIC      BIC    logLik 

  3766.914 3793.113 -1878.457 

... 

Correlation Structure: AR(1) 

 Formula: ~1 | TIME  

 Parameter estimate(s): 

       Phi  

0.05763463  

In the truncated results, notice how the estimate of the phi-coefficient changed (replications 

will result in different estimates of the phi-coefficient because of different structures associated 

with the random sorting of the data).  To ensure the data is in the proper structure the order 

function can be used on any dataframe to restructure by higher-level entity and time: 
 

> UNIV.GROW3<-UNIV.GROW2[order(UNIV.GROW2$SUBNUM,UNIV.GROW2$TIME),] 

> UNIV.GROW3[1:10,] 

    SUBNUM AGE  JOBSAT1  JOBSAT2 JOBSAT3 TIME   MULTDV 

3        1  20 1.666667 1.000000       3    0 1.666667 

3.1      1  20 1.666667 1.000000       3    1 1.000000 

3.2      1  20 1.666667 1.000000       3    2 3.000000 

6        2  24 3.666667 4.000000       4    0 3.666667 

6.1      2  24 3.666667 4.000000       4    1 4.000000 

6.2      2  24 3.666667 4.000000       4    2 4.000000 

9        3  24 4.000000 4.000000       4    0 4.000000 

9.1      3  24 4.000000 4.000000       4    1 4.000000 

9.2      3  24 4.000000 4.000000       4    2 4.000000 

12       4  23 3.333333 3.666667       3    0 3.333333 

 

Finally, we can examine the degree to which the variance of the responses changes over time 

using the varExp option (see Pinheiro & Bates, 2000 for details). 

 
> model.4b<-update(model.4a,weights=varExp(form=~TIME)) 

> anova(model.4a,model.4b) 

         Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

model.4a     1  7 3429.771 3466.451 -1707.886                         

model.4b     2  8 3428.390 3470.309 -1706.195 1 vs 2 3.381686  0.0659 

The model that includes both autocorrelation and allows for decreases in variance fits the data 

marginally better (using a liberal p-value) than does the model that only includes autocorrelation.  
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In subsequent analyses, however, model.4b ran into convergence problems.  Consequently, we 

elect to use model.4a as our final level-1 model. 

With the completion of step 4, we have exhaustively examined the form of the level-1 

relationship between time and job satisfaction.  This analysis has revealed that (a) individuals 

vary in terms of their mean levels of job satisfaction, (b) there is a linear, but not quadratic, 

relationship between time and job satisfaction, (c) the strength of the linear relationships varies 

among individuals, and (d) there is significant autocorrelation in the data.  At this point, we are 

ready to add level-2 variables to try and explain the random variation in intercepts (i.e., mean job 

satisfaction) and in the time-job satisfaction slope. 

5.3.5 Step 5:  Predicting Intercept Variation 

Step 5 in growth modeling is to examine factors that can potentially explain intercept 

variation. In our case, we are interested in examining factors that explain why some individuals 

have high job satisfaction while other individuals have low job satisfaction.  In this example, we 

explore the idea that age at the first data collection time is related to intercept variation. 

To model this relationship, the individual-level characteristic, age, is used as a predictor of the 

job satisfaction intercept. The model that we will test is represented below using the Bryk and 

Raudenbush (1992) notation.  

      Yij = 0j + 1j(Timeij) + rij       

       0j = 00 + 01(Agej) + u0j      

1j = 10 + u1j 

 

This equation states that respondent j’s mean level of job satisfaction (0j) can be modeled as a 

function of two things.  One is the mean level of job satisfaction (00) for all respondents.  The 

second is a coefficient associated with the individual’s age (01).  Note that the error term for the 

intercept (u0j) now represents the difference between an individuals’ mean job satisfaction and 

the overall job satisfaction after accounting for age. In lme the model is specified as: 

 
> model.5<-lme(MULTDV~TIME+AGE,random=~TIME|SUBNUM, 

  correlation=corAR1(),na.action=na.omit,data=UNIV.GROW, 

  control=list(opt="optim")) 

 

> round(summary(model.5)$tTable,dig=3) 

            Value Std.Error  DF t-value p-value 

(Intercept) 2.347     0.146 897  16.086   0.000 

TIME        0.053     0.024 897   2.205   0.028 

AGE         0.034     0.005 486   6.241   0.000 

Model 5 differs only from Model 4a in that Model 5 includes AGE (age at the baseline 

survey). Notice that AGE is positively related to levels of job satisfaction. Also notice that there 

are fewer degrees of freedom for AGE than for TIME since AGE is an individual (level-2) 

attribute. The AGE parameter indicates that a 23-year-old in the baseline survey would have 

average job satisfaction scores across the three times that were 0.034 higher than a 22-year-old in 

the baseline survey.  
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5.3.6 Step 6:  Predicting Slope Variation 

The final aspect of growth modeling involves attempting to determine attributes of individual 

respondents that are related to slope variability. In this section, we attempt to determine whether 

respondent age can explain some of the variation in the time-job satisfaction slope. The model 

that we test is presented below: 

Yij = 0j + 1j(Timeij) + rij      

            0j = 00 + 01(Agej) + u0j       

            1j = 10 + 11(Agej) +  u1j      

 

This model is similar to the model specified in step 5 except that we now test the assumption 

that the slope between time and job satisfaction for an individual (1j) is a function of an overall 

slope (10), individual age (11), and an error term (u1j).  In lme, the model is specified as: 
 

> model.6<-lme(MULTDV~TIME*AGE,random=~TIME|SUBNUM, 

  correlation=corAR1(),na.action=na.omit,data=UNIV.GROW, 

  control=list(opt="optim")) 

Note that the only difference between model 5 and model 6 is that we include an interaction 

term for TIME and AGE. A summary of model 6 reveals a significant interaction. 

 
> round(summary(model.6)$tTable,dig=3) 

             Value Std.Error  DF t-value p-value 

(Intercept)  2.098     0.186 896  11.264   0.000 

TIME         0.271     0.104 896   2.608   0.009 

AGE          0.043     0.007 486   6.180   0.000 

TIME:AGE    -0.008     0.004 896  -2.153   0.032 

 

5.3.7 Plot Growth Model Using the lme4 Package and Interactions Library 

To plot we first re-estimate the model in the lme4 package. The lmer function does not have 

the option to control for autocorrelation, but we can see that omitting this option does not change 

our substantive interpretation. 

 
> library(lme4) 

> library(lmerTest) 

 

> model.6a<-lmer(MULTDV~TIME*AGE+(TIME|SUBNUM),data=UNIV.GROW) 

> round(summary(model.6a)$coef,dig=3) 

            Estimate Std. Error      df t value Pr(>|t|) 

(Intercept)    2.078      0.186 470.301  11.176    0.000 

TIME           0.273      0.104 462.965   2.630    0.009 

AGE            0.044      0.007 469.523   6.276    0.000 

TIME:AGE      -0.008      0.004 461.280  -2.169    0.031 

 

The code below uses the lmer model to produce a plot using the defaults of the mean and 

one standard deviation above and below the mean AGE (a 32, 26 and 20 year old). 
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library(interactions) 

library(ggplot2) 

win.graph(height=4.75,width=6) 

interact_plot(model.6a,pred=TIME,modx=AGE, 

              modx.labels = c("20 Years Old","26 Years Old", 

                              "32 Years Old"), 

              x.label = "Time", 

              y.label = "Job Satisfaction", 

              legend.main="Age at Baseline")+ 

  theme_bw()+ 

  theme(legend.background=element_rect(fill="white", 

           size=0.5, linetype="solid",color ="black"), 

        legend.position = c(0.5, 0.2), 

        axis.title.x = element_text(color="black", size=14), 

        axis.title.y = element_text(color="black", size=14), 

        legend.title = element_text(color="black", size=13, 

                                    hjust=.5), 

        legend.text = element_text(color="black", size=12) 

  ) 

ggsave(filename = "c:\\temp\\plotgg.jpg", 

       device = "jpeg") 

 

 

Older individuals at baseline reported higher job satisfaction initially and tended to show a 

very slight increase over time.  In contrast, younger respondents tended to report lower initial job 

satisfaction, but showed a more pronounced increase in job satisfaction over time. 
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5.4 Discontinuous Growth Models 

In the previous example (section 5.3.2), two variants of time were examined (linear and 

quadratic).  Indeed, with only three periods it is difficult to explore more than a linear and 

quadratic trend (through one could treat time as a categorical variable and make no assumptions 

about trends).  In situations where numerous repeated measures are collected, however, a variety 

of interesting options exist for modeling time. 

One particularly interesting variant is the discontinuous growth model (DGM) a model also 

referred to as the piecewise hierarchical linear model (Raudenbush & Bryk, 2002; Hernández-

Lloreda et al., 2004) or the multiphase mixed-effects model (Cudeck & Klebe, 2002). The basic 

idea behind the DGM is to simultaneously use a set of two or three time-related covariates to 

capture a known discontinuity. 

For instance, Lang and Bliese (2009) use the DGM to model the performance impact of 

unexpectedly changing key elements of a complex computer-based task. In the design, 

participants worked on the task for six trials and then on the seventh trial the task became 

substantially more difficult. Although there are numerous variants for modeling a discontinuity 

of this nature (see Bliese & Lang, 2016), the basic form can be captured by the three terms 

TIME, TRANS, and POST. Because these time-varying predictors represent a system of 

equations, TIME captures the initial linear trend; TRANS captures the immediate response to the 

event, and POST captures the post-transition slope change. A fourth useful variant is to include a 

TIME.A (for absolute) that results in expressing the TRANS and POST parameters in absolute 

versus relative terms. 

5.4.1 Coding for DGM Simple Cases 

The data set tankdat from Lang and Bliese (2009) was used to illustrate variants of the 

DGM in Bliese and Lang (2016). Below we apply a subset of the R code from Appendix B of 

Bliese and Lang to illustrate basic form of the DGM. 
 

> data(tankdat) 

 

> tankdat$TRANS<-ifelse(tankdat$TIME<6,0,1) 

> tankdat$POST<-ifelse(tankdat$TIME>5,tankdat$TIME-6,0) 

> tankdat$TIME.A<-ifelse(tankdat$TIME<5,tankdat$TIME,5) 

 

> tankdat[1:12,c("TIME","TRANS","POST","TIME.A")] 

   TIME TRANS POST TIME.A 

1     0     0    0      0 

2     1     0    0      1 

3     2     0    0      2 

4     3     0    0      3 

5     4     0    0      4 

6     5     0    0      5 

7     6     1    0      5 

8     7     1    1      5 

9     8     1    2      5 

10    9     1    3      5 

11   10     1    4      5 

12   11     1    5      5 
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TRANS represents a dummy-coded variable that is zero before the event and one after the 

event. POST is slightly more complex in that it begins with a zero and then begins recounting 

(starting with zero) after the event occurs. TIME.A begins similarly to TIME, but holds the pre-

transition element (5 in this case) constant once the change has occurred. 

Below the basic DGM mixed-effect model is estimated and used to illustrate the difference 

between TIME and TIME.A. 

 
> tmod<-lme(SCORE~TIME+TRANS+POST, random=~1|ID,tankdat) 

> round(summary(tmod)$tTable,dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept) -3.686     0.631 2021  -5.837       0 

TIME         1.814     0.125 2021  14.461       0 

TRANS       -4.980     0.619 2021  -8.049       0 

POST        -1.220     0.177 2021  -6.880       0 

 

> tmod.a<-lme(SCORE~TIME.A+TRANS+POST, random=~1|ID,tankdat) 

> round(summary(tmod.a)$tTable,dig=3) 

             Value Std.Error   DF t-value p-value 

(Intercept) -3.686     0.631 2021  -5.837       0 

TIME.A       1.814     0.125 2021  14.461       0 

TRANS       -3.166     0.537 2021  -5.895       0 

POST         0.593     0.125 2021   4.732       0  

 

Notice that TIME and TIME.A have the same parameter estimate and standard errors and 

both indicate that the performance score increased by 1.81 each trial.  In the top model (TIME), 

the parameter estimate for TRANS is -4.98 and the POST estimate is -1.22 (both are significant). 

When using TIME, both TRANS and POST represent change relative to TIME, so the decline of 

-4.98 assumes this time period would have increased by 1.81. Likewise, the POST slope of -1.22 

indicates a slope that is 1.22 less steep than the 1.81 increase associated with TIME. 

The parameters associated with TIME.A are absolute, so in the lower model the value of -3.17 

represents the absolute change (relative to zero) in performance. Likewise, the now positive 

slope of 0.59 indicates that while the recovery slope is significantly less strong than the pre-

transition slope associated with TIME, the recovery slope is still significantly positive. 

The DGM model, like the growth model, can be examined in a series of steps examining 

person-level variability in each parameter and including predictors of this variability. Interested 

readers are directed to Bliese and Lang (2106) and Bliese, Kautz, and Lang (2020) for additional 

details. Several examples using the DGM include Kim and Ployhart, (2014); Li, Hausknecht and 

Dragoni (2020); Pagiavlas, et al., (2021) and Rupp et al., 2009; Stewart et al., (2017).  

5.4.2 Coding for DGM Complex Cases (dgm.code) 

In cases such as with the tank data from Lang and Bliese (2009), the coding of the time-

varying parameters is simple. In many applied settings, however, the coding can be more 

complicated for three reasons. First the longitudinal or panel data may be unbalanced such that 

each higher-level entity has a different number of repeated measures. Second, the event of 

interest may occur at different time points for each entity. Third, entities might not have the same 

number of events or any events at all. 
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For instance, a study of the impact of employee turnover on store performance might have 

panel data with thousands of stores providing quarterly data for 2 years. In each quarter, turnover 

may or may not have occurred, so each store has a unique pattern of turnover. Attempting to 

code the DGM time-varying covariates on a store-by-store basis would be challenging and time 

consuming.  

The dgm.code function was designed to produce a design matrix for cases where events 

occur on an irregular basis and/or where entities have different number of observations. Details 

on the using dgm.code are in the help files, but below I reproduce one example. 

 
> data(tankdat) 

>  

> # Add a marker (1 or 0) indicating an event at random 

> set.seed(343227) 

> tankdat$taskchange<-rbinom(nrow(tankdat),1,prob=.1) 

> tankdat[1:24,] 

   ID    CONSC TIME SCORE taskchange 

1   1 1.041923    0    -5          0 

2   1 1.041923    1     0          0 

3   1 1.041923    2    -3          0 

4   1 1.041923    3    -9          0 

5   1 1.041923    4    -7          0 

6   1 1.041923    5    -3          0 

7   1 1.041923    6    -7          0 

8   1 1.041923    7    -3          0 

9   1 1.041923    8   -11          0 

10  1 1.041923    9    -5          0 

11  1 1.041923   10    -1          1 

12  1 1.041923   11    -4          0 

 

13  2 1.426890    0     3          0 

14  2 1.426890    1    17          1 

15  2 1.426890    2    18          0 

16  2 1.426890    3    10          0 

17  2 1.426890    4    22          1 

18  2 1.426890    5    14          0 

19  2 1.426890    6    -3          1 

20  2 1.426890    7     6          0 

21  2 1.426890    8    10          0 

22  2 1.426890    9    15          0 

23  2 1.426890   10    14          0 

24  2 1.426890   11     7          0 

 

In this example, the first individual (ID=1) had a taskchange at time 10 while the second 

individual (ID=2) had a task change at times, 1, 4, and 6. This example illustrates several issues. 

First, there are clearly different patterns of events. Second, it is not clear how events to code. An 

additional issue is that the event may occur on the first observation in which case the TRANS 

and POST time-varying vectors cannot be estimated. If we attempt to create the DGM design 

matrix we get the following error identifying groups that start with a taskchange (truncated 

output): 

 
> OUT<-with(tankdat,dgm.code(ID,TIME,taskchange)) 
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[1] "The following groups start with an event" 

     grp time event 

97     9    0     1 

169   15    0     1 

193   17    0     1 

241   21    0     1 

337   29    0     1 

373   32    0     1 

385   33    0     1 

Truncated… 

 

 To handle both the issue of multiple events and an event starting on the first occasion, the 

dgm.code function contains two control options. By setting first.obs=TRUE we can recode the 

first observation to zero keeping a marker for whether we made this change. By setting n.events 

we can limit the design matrix to code only the first few events.  For instance, to code only two 

events and recode the first event to a zero the command would be: 

 
> OUT<-with(tankdat,dgm.code(ID,TIME,taskchange,n.events=2,first.obs=TRUE)) 

> OUT[1:24,] 

   grp time event trans1 trans2 post1 post2 time.a tot.events event.first 

1    1    0     0      0      0     0     0      0          1           0 

2    1    1     0      0      0     0     0      1          1           0 

3    1    2     0      0      0     0     0      2          1           0 

4    1    3     0      0      0     0     0      3          1           0 

5    1    4     0      0      0     0     0      4          1           0 

6    1    5     0      0      0     0     0      5          1           0 

7    1    6     0      0      0     0     0      6          1           0 

8    1    7     0      0      0     0     0      7          1           0 

9    1    8     0      0      0     0     0      8          1           0 

10   1    9     0      0      0     0     0      9          1           0 

11   1   10     1      1      0     0     0      9          1           0 

12   1   11     0      1      0     1     0      9          1           0 

13   2    0     0      0      0     0     0      0          3           0 

14   2    1     1      1      0     0     0      0          3           0 

15   2    2     0      1      0     1     0      0          3           0 

16   2    3     0      1      0     2     0      0          3           0 

17   2    4     1      0      1     0     0      0          3           0 

18   2    5     0      0      1     0     1      0          3           0 

19   2    6     1      0      1     0     2      0          3           0 

20   2    7     0      0      1     0     3      0          3           0 

21   2    8     0      0      1     0     4      0          3           0 

22   2    9     0      0      1     0     5      0          3           0 

23   2   10     0      0      1     0     6      0          3           0 

24   2   11     0      0      1     0     7      0          3           0 

 

The output returns a time, time.a, trans1, trans2, post1 and post2 to model the design matrix 

for two events. It also records the total events for each entity (tot.events) and indicates whether 

the first observation was an event.  

Finally, to make use of this design matrix, it would need to be merged with the original data 

and reordered as follows: 
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> tankdat.dgm<-merge(tankdat,OUT,by.x=c("ID","TIME"),by.y=c("grp","time")) 

> tankdat.dgm<-tankdat.dgm[order(tankdat.dgm$ID,tankdat.dgm$TIME),] 

5.5 Testing Emergence by Examining Error Structure 

In most treatments of growth models heteroscedasticity in error structures are considered a 

form of model miss-specification that should be controlled (see section 5.3.4). Variants of 

mixed-effects models, however, have been suggested as a tool to formally test whether patterns 

of change in residual error variance over time have substantive meaning (Lang & Bliese, 2019; 

Lang et al., 2018; Lang et al., 2019). 

For instance, consider the patterns displayed by participants over time in Sherif’s (1935) 

classic experiment on group influence. In the experimental paradigm participants estimated 

movement of a small light (in inches) in a completely dark room. Participants either made initial 

estimates alone or with other group members and Sherif provided a plot of the results over three 

group-based trails. The data set sherifdat contains the values presented in Sherif’s plot.  The 

first set of figures below present the pattern for participants who began making estimates alone 

(and then transitioned to three trails where they made estimates with other group members). The 

second set of figures presents the pattern for participants who began making estimates with other 

group members over three trials. 
 

> data(sherifdat) 

> library(lattice) 

> xyplot(y~time|as.factor(group),sherifdat[sherifdat$condition==1,], 

  groups=person,type=c("p","l"),ylim=c(0,8), 

  main="Started in an Individual Trial") 
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> xyplot(y~time|as.factor(group),sherifdat[sherifdat$condition==0,], 

  groups=person,type=c("p","l"),ylim=c(0,8), 

  main="Started in a Group Trial") 

 

In both cases (either starting as an individual or starting in a group setting), the plots suggest 

that group members influence each other such that consensus emerges. The idea of consensus 

emergence appears stronger in cases where individuals started their first trial as an individual, 

but both conditions appear to show this effect. Lang and Bliese (2019) and Lang et al. (2018)  

provide details on how a three-level mixed-effect model (the census emergence model or CEM) 

can be estimated and how the -2log likelihood values can be contrasted to formally test whether 

emergence is present. Details are beyond the scope of this manual, but the basic formal test of 

emergence is provided below: 
 

> threelevel<-lme(y ~ time,  

  random = list(group=pdLogChol(~time),person=pdIdent(~1)), 

  data=sherifdat,control=lmeControl(opt="optim",maxIter=3000, 

  msMaxIter=3000)) 

  

> threelevelCEM<-update(threelevel,weights=varExp( form = ~ time)) 

  

> anova(threelevel,threelevelCEM) 

              Model df      AIC      BIC    logLik   Test  L.Ratio p-value 

threelevel        1  7 182.3422 198.0817 -84.17112                         

threelevelCEM     2  8 155.8097 173.7977 -69.90485 1 vs 2 28.53253  <.0001 

 

In both models, the random statement is a complex form of a three-level model that allows the 

slope for each group to randomly vary while fixing the time slope for individuals. A summary of 

the model threelevelCEM (not shown) provides the estimate for varExp as -1.017 indicating 
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an overall reduction in residual variance within groups (emergence). Including a variance term 

leads to a significant improvement in model fit suggesting that a significant emergence effect 

exists. Finally, while not demonstrated here, the models can be modified to formally test whether 

the emergence effect is stronger under the two conditions of starting individually or in a group. 

5.6 Empirical Bayes estimates 

While briefly introduced previously, one of the useful aspects of examining repeated 

measures in mixed-effects models is the ability to estimate predicted intercepts and slopes for 

individuals using (a) information about the individual along with (b) information from the rest of 

the sample. For instance, consider the growth modeling data presented in section 5.3. In this 

example, we modify the data so that only those with responses at all three times are included. We 

do so only to show that OLS-based estimates and empirical Bayes estimate differ even when data 

are complete.  
 

> data(univbct) 

> TEMP<-univbct[3*1:495,c(22,1:17)]  #convert to multivariate form 

> TEMP<-na.exclude(TEMP[,c("SUBNUM","JOBSAT1","JOBSAT2","JOBSAT3")]) 

> TEMP.UNIV<-make.univ(TEMP,TEMP[,2:4],outname="JSAT") 

 

> library(lattice) 

> xyplot(JSAT~TIME|as.factor(SUBNUM),data=TEMP.UNIV[1:90,], 

    type=c("p","r","g"),col="blue",col.line="black", 

    xlab="Time",ylab="Job Satisfaction") 
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The figure shows large differences in intercepts and in slopes, yet each panel is estimated 

separately without taking into consideration any of the data from other respondents. An 

alternative would be to estimate a simple growth model and use data from model parameters to 

estimate values for each individual. 
  
>tmod<-lme(JSAT~TIME,random=~TIME|SUBNUM, TEMP.UNIV,    

    na.action=na.omit,control=list(opt="optim")) 

From this model, one can extract the empirical Bayes estimates for both the intercept and the 

slope by using the coef function:  the first 12 values (bottom two rows) are listed. 
 

> coef(tmod)[1:12,] 

   (Intercept)         TIME 

1     1.771548  0.358222009 

2     3.701752  0.069173239 

3     3.868707 -0.002492476 

4     3.368637 -0.039600872 

5     3.654505 -0.054411154 

6     2.629151  0.313791178 

7     3.537183 -0.615478500 

8     2.843353  0.365710056 

10    1.532927  0.496616898 

11    2.892191 -0.014917079 

12    3.773418  0.002444280 

14    3.034727  0.103730558 

The empirical Bayes estimates returned from coef correspond to what is displayed in the 

lattice plot.  Individual 1, for instance, has a low value for satisfaction and a positive slope and 

individual 7 has a moderately high value and a strong negative slope. 

The differences can be more easily visualized by plotting all 30 individuals on a single plot.  

The plot represents the intercept and slope estimates from 30 separate linear regression 

equations. 
 
>tmod3<-lmList(JSAT~TIME|SUBNUM, data=TEMP.UNIV[1:90,]) 

 

>plot(TEMP.UNIV$TIME,TEMP.UNIV$JSAT, xlab="Time", 

     ylab="Job Satisfaction",type="n") 

 

>lmplot<-function(X){ 

   for (i in 1:25){ 

   abline(X[[i]]) 

 }} 

 

>lmplot(tmod3) 
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  The second plot is for the same 30 individuals, but is based off of the empirical Bayes 

estimates. 

 
>plot(TEMP.UNIV$TIME,TEMP.UNIV$JSAT, xlab="Time", 

     ylab="Job Satisfaction",type="n") 

>apply(coef(tmod)[1:12,],1,abline) 
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The fact that each individual’s estimates are partially based on information from the rest of 

the sample adjusts some of the more extreme response (and explains why these are sometimes 

referred to as shrunken estimates).  Empirical Bayes estimates may be particularly useful in 

situations where intercepts and slopes are used to predict other outcomes.  For instance, Chen, 

Ployhart, Thomas, Anderson, & Bliese (2011) used empirical Bayes estimates of slope changes 

in job satisfaction and showed that the nature of the change (increase or decrease) was the 

primary predictor of turnover intentions.  

It may go without saying, but one can also extract empirical Bayes estimates from non-

longitudinal nested models such as those considered in section 4.  In the context of non-

longitudinal models, the values provides estimates of intercepts and slopes for each group 

adjusted for the overall intercept and slope. As a general rule, when ICC(1) values are small, the 

empirical Bayes estimates are more strongly adjusted to the rest of the sample (more shrinkage) 

than when ICC(1) values are large (see Gelman & Pardoe, 2006). 

6 More on lme4  

While the current document has focused on the nlme package for mixed-effects models, the 

lme4 package in R provides additional flexibility in terms of specifying models.  The lme4 

package is particularly valuable in dealing with (a) non-normally distributed outcomes and (b) 

partially crossed data structures.  

6.1 Dichotomous outcomes 

When the dependent variable is dichotomous or otherwise non-normally distributed, it may be 

useful to estimate a generalized linear mixed effects model (glmm) rather than a linear mixed 

effects model.  Below we dichotomize WBEING and use glmer from the lme4 package with a 

binomial link function to estimate a mixed-effects logistic regression model.  
 

>library(multilevel) 
>library(lme4) 

>data(bh1996) 

>tmod<-glmer(ifelse(WBEING>3.5,1,0)~HRS+G.HRS+(1|GRP), 

       family="binomial",control=glmerControl(optimizer="bobyqa"),bh1996) 

 

>summary(tmod) 

 

Generalized linear mixed model fit by maximum likelihood (Laplace 

  Approximation) [glmerMod] 

 Family: binomial  ( logit ) 

Formula: ifelse(WBEING > 3.5, 1, 0) ~ HRS + G.HRS + (1 | GRP) 

   Data: bh1996 

Control: glmerControl(optimizer = "bobyqa") 

 

     AIC      BIC   logLik deviance df.resid  

  7572.1   7599.7  -3782.0   7564.1     7378  

 

Scaled residuals:  

    Min      1Q  Median      3Q     Max  

-0.9902 -0.5559 -0.4672 -0.3587  4.6130  

 

Random effects: 
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 Groups Name        Variance Std.Dev. 

 GRP    (Intercept) 0.06323  0.2515   

Number of obs: 7382, groups:  GRP, 99 

 

Fixed effects: 

            Estimate Std. Error z value Pr(>|z|)     

(Intercept)  2.80660    0.53504   5.246 1.56e-07 *** 

HRS         -0.09860    0.01465  -6.731 1.69e-11 *** 

G.HRS       -0.26784    0.04923  -5.440 5.31e-08 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Correlation of Fixed Effects: 

      (Intr) HRS    

HRS   -0.020        

G.HRS -0.954 -0.272 

 

The precision of the model in terms of log likelihood can be improved by including the nAGQ 

option with a value greater than 1 (100 in this case).  Notice the slight change in log likelihood 

values and the minor changes in parameter estimates and standard errors between the model 

based on nAGQ=1 (above) and nAGQ=25 (below). In practice, one would likely want to change 

nAGQ values to (a) verify parameter estimates and standard errors and (b) verity that contrasts of 

-2log likelihood values contrasting models with anova are similar with higher nAGQ values. In 

my experience using values above 100 is rarely useful.  
 

> tmod.r<-glmer(ifelse(WBEING>3.5,1,0)~HRS+G.HRS+(1|GRP), 

  family="binomial", control=glmerControl(optimizer="bobyqa"), 

  bh1996,nAGQ=25) 

 

> logLik(tmod) # Original model with nAGQ=1 

'log Lik.' -3782.036 (df=4) 

 

> logLik(tmod.r) # Model with nAGQ = 25 

'log Lik.' -3781.999 (df=4) 

 

> summary(tmod.r)$coef 

               Estimate Std. Error   z value     Pr(>|z|) 

(Intercept)  2.80640657 0.53692297  5.226833 1.724383e-07 

HRS         -0.09861117 0.01466700 -6.723335 1.776112e-11 

G.HRS       -0.26782094 0.04939543 -5.421978 5.894300e-08 

 

6.2 Crossed and partially crossed models 

The second situation in which lme4 is particularly valuable is in cases where data are 

partially or fully crossed.  For instance, in a longitudinal study individuals might be nested 

within groups, but over time some individuals might switch from one group to another.  If no 

participants switched groups, the data would be fully nested with repeated observations nested 

within individuals nested within groups (a three-level model). In lme the three-level nested 

model would be specified as random= ~1|GRP/IND.  If individuals switch groups, though, 

the fully nested structure no longer holds.  In lme4 and the lmer function, however, the 

structure could be specified as (1|GRP)+(1|IND). The lmer specification does not assume 

fully nested data and will provide variance estimates if the data are partially crossed. 
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6.3 Predicting values in lme4 

As illustrated in the text, statistical models can be used to predict levels of an outcome 

variable given specific values of predictors. R has a number of predict functions linked to 

specific models (e.g., lm, glm, lme, lmer, glmer).  The predict functions are 

generally consistent in terms of usage; however, there are minor differences when applied to 

specific models. Recall, for instance, that one must specify level=0 to obtain overall sample 

based predictions when using lme. 

 

In most cases in mixed-effects models, one will be interested in obtaining predictions for the 

overall sample rather than predictions for any specific unit; however, in the lmer and glmer 

functions associated with lme4, the predict command uses the option re.form=NA rather than 

level=0 to indicate that predictions should be made based on the parameter estimates from the 

overall sample. An example is provided below:   
 

> library(multilevel) 

> library(lme4) 

> data(bh1996) 

 

> tmod<-lmer(WBEING~HRS*LEAD+(1|GRP),bh1996) 

 

> TDAT<-data.frame(HRS=c(7,7,12,12),LEAD=c(2.12,2.12,3.66,3.66)) 

> predict(tmod,TDAT,re.form=NA) 

       1        2        3        4  

2.519160 2.519160 3.137911 3.137911 

 

 

As another example, the code below illustrates the use of the type="response" option 

with models that have a dichotomous variable as the outcome.  Notice that one can transform the 

prediction to a percent (-2.377 to 0.085 or 8.5%), but it is often easier to use 

type="response". 

 
> tmod<-glmer(ifelse(WBEING>3.5,1,0)~LEAD+(1|GRP),family="binomial",bh1996, 

  control=glmerControl(optimizer="bobyqa")) 

  

> TDAT<-data.frame(LEAD=c(2.12,3.66)) 

 

> predict(tmod,TDAT,re.form=NA) 

         1          2  

-2.3774501 -0.6565601  

 

> exp(-2.3774501)/(1+exp(-2.3774501)) 

[1] 0.08490848 

 

> predict(tmod,TDAT,re.form=NA,type="response") 

         1          2  

0.08490848 0.34151277  
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7 Miscellaneous Functions and Tips 

The multilevel package has a number of other functions that have either been referenced in 

appendices of published papers, or are of basic utility to applied organizational researchers.  This 

section briefly describes these functions.  Complete help files are available in the multilevel 

package for each of the functions discussed. 

7.1 Scale reliability: cronbach and item.total 

Two functions that are can be particularly useful in estimating the reliability of multi-item 

scales are the cronbach and the item.total functions.  Both functions take a single 

argument, a dataframe with multiple columns where each column represents one item in a multi-

item scale. 

7.2 Random Group Resampling for OLS Regression Models 

The function rgr.OLS allows one to contrast a group-level hierarchical regression model 

with an identically specified model where group identifiers are randomly generated.  This type of 

model was estimated in Bliese and Halverson (2002). 

7.3 Estimating bias in nested regression models:  simbias 

Bliese and Hanges (2004) showed that a failure to model the nested properties of data in 

ordinary least squares regression could lead to a loss of power in terms of detecting effects.  The 

article provided the simbias function to help estimate the degree of power loss in complex 

situations. 

7.4 Detecting mediation effects: sobel 

MacKinnon, Lockwood, Hoffman, West and Sheets (2002) showed that many of the 

mediation tests used in psychology tend to have low power.  One test that had reasonable power 

was Sobel's (1982) indirect test for mediation.  The sobel function provides a simple way to 

run Sobel's (1982) test for mediation.  Details on the use of the sobel function are available in 

the help files. 
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C h a P t e r  1 7

A PRIMER ON MULTILEVEL 
(RANDOM COEFFICIENT) 
REGRESSION MODELING

Levi K. Shiverdecker and James M. LeBreton

Hierarchical nesting is a fundamental property 
woven into the fabric of existence itself: from 
the microscopic organelles nested within our 
cells to the Milky Way galaxy nested within an 
infinitely expanding universe. Residing at a level 
somewhere in between, social scientists find 
themselves pondering questions relating to both 
hierarchical and temporal nesting. For example, 
clinical psychologists may want to investigate the 
efficacy of therapy for clients nested within different 
therapists. Similarly, organizational psychologists 
may want to examine the moderating role of a 
group-level phenomenon (e.g., team cohesion) on 
the relationship between person-level variables 
(e.g., employee-level burnout and employee-
level turnover). Alternatively, developmental 
psychologists might wish to investigate within-
person trends (e.g., growth and/or decline in 
cognitive abilities) across the lifespan. These 
hierarchically and temporally nested structures 
may be thought of as multilevel structures because 
they span multiple conceptual levels (e.g., repeated 
observations nested in persons nested in groups). 
The first part of this handbook focuses on issues 
related to multilevel constructs and multilevel 
theories. The second part of this handbook focuses 
on issues related to multilevel measurement and 
multilevel design. The third section of the handbook 
transitions to discussing various multilevel analytic 
tools and issues. The purpose of the current chapter 

is to provide the reader with a basic grounding in 
the classic multilevel regression (MLR) model.

To effectively tackle the analyses for research 
questions involving nested data structures, 
particular statistical analytic techniques must be 
employed to ensure that the subsequent results are 
unbiased and as consistent as possible to the true 
population parameters. Specifically, MLR has been, 
and continues to be, one of the most popular data 
analytic techniques used to test multilevel research 
questions and hypotheses. MLR is sometimes 
referred to by other names including hierarchical 
linear modeling, random coefficients regression 
(RCR), mixed effects modeling, mixed determinants 
modeling, or most commonly, multilevel modeling 
(MLM). We elected to use the MLR label rather 
than MLM in order to distinguish this approach 
to multilevel analysis from the other approaches 
presented in this handbook.

The onset of this chapter provides a brief 
introduction to MLR using an illustrative example 
that will be the focal example utilized for the 
subsequent sections of the chapter. The introduction 
to our illustrative example and the MLR analytic 
framework will be followed by a description of why 
MLR is necessary for nested data by examining 
how alternative methods may be inappropriate and 
how MLR circumvents the shortcomings of these 
alternatives. The chapter progresses into a step-by-
step introduction to a model building/comparison 

http://dx.doi.org/10.1037/0000115-018
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approach for using MLR analyses for hierarchically 
nested data.

Caveat. The models described in this chapter 
are applicable only when the dependent variable is 
measured at the lowest level (Level 1) in the nested 
structure. Independent variables may be measured 
at either the lower or at higher levels (Level 1, 
Level 2, etc.).

ILLUSTRATIVE EXAMPLE

One way to initially conceptualize MLR is to imagine 
taking a single-level research question and testing 
that research question across multiple samples. 
For the remainder of our chapter, we will rely on 
an illustrative example where we initially wish to 
test the hypothesis that there is a positive linear 
relationship between employees’ levels of trait 
aggression (AGG; James & LeBreton, 2010, 2012) 
and their subsequent levels of counterproductive 
workplace behaviors (CWBs; e.g., harassment, lying, 
theft, sabotage; Bennett & Robinson, 2000). We 
generated a data set corresponding to data from 
600 employees uniquely nested in 60 different 

teams. To simplify our presentation, the data are 
balanced with 10 employees assigned to each of 
the 60 teams.

We begin by regressing CWBs onto AGG using 
the data from the first 10 employees nested in 
Group 1. We repeat this analysis for each of the 
remaining groups, leading to 60 independent 
estimates of the regression coefficients (i.e., 
intercept and slope). Figures 17.1 through 17.4 
provide a summary of the results for the first four 
groups. Table 17.1 contains the regression weights 
and R2 estimates for each of the 60 groups and  
Figure 17.5 provides a visual representation of the  
60 separate regressions superimposed on a single 
graph. Appendix 17.1 contains a copy of the R 
code used to generate all of the analyses and figures 
presented in this chapter. A brief review of Table 17.1 
and Figures 17.1 through 17.5 reveals that there is 
substantial variability in the results across these  
60 groups. For example, when trait AGG is zero (i.e., 
the minimum score on our survey), the predicted 
levels of employees’ CWB (i.e., intercept coefficients) 
varies across the groups ranging from –0.37 to 3.15. 
Similarly, the strength of the relationship varies 
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FIGURE 17.1.  Simple linear regression of counterproductive workplace behaviors 
onto trait aggression using data for the 10 employees nested in Group 1.
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FIGURE 17.2.  Simple linear regression of counterproductive workplace behaviors 
onto trait aggression using data for the 10 employees nested in Group 2.
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FIGURE 17.3.  Simple linear regression of counterproductive workplace behaviors 
onto trait aggression using data for the 10 employees nested in Group 3.
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FIGURE 17.4.  Simple linear regression of counterproductive workplace behaviors 
onto trait aggression using data for the 10 employees nested in Group 4.

TABLE 17.1

Results of Simple Linear Regression Analyses Repeated for the 60 Groups

Group Intercept Slope R 2

1 2.051041667 0.280208333 0.4664359014
2 1.526119403 0.017910448 0.0088583358
3 2.045588235 0.048529412 0.0089944992
4 0.819230769 0.180769231 0.0840995184
5 1.906250000 –0.006250000 0.0009360599
6 1.441791045 0.011194030 0.0030809256
7 1.352941176 –0.011764706 0.0008650519
8 0.991428571 0.042857143 0.2008928571
9 2.685294118 –0.132352941 0.1153681812
10  1.072727273  0.403030303 0.6802415013
11  –0.065753425  0.526027397 0.6173426667
12  1.686363636 –0.022727273 0.0025826446
13  3.050000000 –0.316666667 0.2103729604
14  0.733644860  0.192990654 0.5455519520
15  0.144927536  0.585507246 0.2992724286
16  –0.370000000  0.450000000 0.3806390977
17  1.968421053  0.456578947 0.4242980577
18  1.180000000  0.075000000 0.1785714286
19  0.881250000  0.218750000 0.2734375000
20  6.250000000 –1.150000000 0.4467905405
21  0.600000000  0.200000000 0.5977011494
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across the groups with slopes ranging from –0.55 
(and an R2 of 0.00) to 0.70 (and an R2 of 0.84).

Now, obviously, much of the variability is driven 
by sampling error. After all, we are conducting 
regression analyses using the samples size of  
N = 10. However, we also suspect that some of the 
variance may be attributed to differences in the 
social relationships that have formed within these 

groups. Specifically, we hypothesize that scores on 
a measure of group cohesiveness (COH) might be 
negatively related to CWBs even after controlling 
for employee-level AGG. Essentially, we predict that 
employees working in a highly cohesive group will 
be less likely to engage in CWBs than those working 
in fragmented or uncohesive groups. In addition, we 
hypothesize that the variability in slopes observed in 

22  1.471698113  0.037735849 0.0314465409
23  2.764705882 –0.376470588 0.8366013072
24  –0.600000000  0.550000000 0.8897058824
25  1.375852273  0.076988636 0.1862018782
26 2.718518519 –0.237037037 0.3108682453
27 2.023076923 –0.053846154 0.0088066139
28 1.200000000  0.200000000 0.1397849462
29 1.127777778  0.138888889 0.0964506173
30 1.267924528  0.109433962 0.1823899371
31 0.719230769 0.219230769 0.2431158336
32 1.626415094 –0.015094340 0.0058055152
33 1.157142857 0.328571429 0.1420515575
34 1.925000000 –0.025000000 0.0125000000
35 0.978378378  0.237837838 0.2198501022
36 1.448648649 –0.035135135 0.0496474736
37 0.727058824  0.270588235 0.4227941176
38 1.360000000  0.080000000 0.0421052632
39 3.100000000 –0.212500000 0.1619955157
40 1.066666667 –0.008333333 0.0104166667
41 1.672727273 –0.018181818 0.0014204545
42 0.873913043  0.082608696 0.0421926134
43 0.695652174  0.313043478 0.2860295740
44 0.991304348  0.026086957 0.0489130435
45 2.900000000 –0.550000000 0.7438524590
46 0.813235294  0.704411765 0.5582152954
47 3.145454545 –0.345454545 0.2369543814
48 0.900000000  0.250000000 0.3409090909
49 1.337096774  0.111290323 0.2666330645
50 1.561194030  0.216417910 0.2120310609
51 2.884210526 –0.273684211 0.2928308425
52 1.610000000  0.150000000 0.0757575758
53 0.561111111  0.181944444 0.7696896304
54 1.854022989  0.101149425 0.0519168820
55 0.542718447 0.190291262 0.7698057250
56 0.908108108 0.216216216 0.3931203931
57 1.849411765 0.094117647 0.1742919390
58 0.003030303 0.453030303 0.2730418476
59 1.305000000 0.075000000 0.0546116505
60 –0.088888889 0.459259259 0.8043523750

TABLE 17.1

Results of Simple Linear Regression Analyses Repeated for the 60 Groups (Continued)

Group Intercept Slope R 2
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Figure 17.5 may also be related to COH. Specifically, 
we hypothesize weaker (positive) relationships 
between CWBs and AGG for highly cohesive groups, 
but this (positive) relationship will grow stronger 
as teams become less cohesive. Conceptually, we 
are trying to use a group-level variable (COH) to 
explain some of the between-groups variability 
in the regression coefficients (see Table 17.1 and 
Figure 17.5).

Stated formally, we plan to test the following 
hypotheses:

1. There is a positive relationship between 
individual-level trait AGG and individual-level 
CWBs.

2. There is a negative relationship between group-
level COH and individual-level CWBs.

3. Group-level COH will moderate the strength of 
the relationship between individual-level trait 
AGG and individual-level CWBs, such that the 
relationship will become weaker as group-level 
COH increases.

For this example, we will assume that cohesion 
is operationalized as the shared perception among 
employees nested in work groups. It is presumed 
that the cohesion data were collected at the 
individual level and aggregated (i.e., averaged) to 
the group level after establishing that sufficient 
agreement among employees existed within the work 
groups (see Chapter 12, this volume; also cf. James, 
Demaree, & Wolf, 1984; 1993; LeBreton & Senter, 
2008). The remainder of this chapter discusses how 
a researcher could use our sample data to test the 
above hypotheses. Like other treatments of MLR, 
we first explain the necessity of MLR for testing 
these hypotheses and then adopt a model-building 
procedure to formally test our hypotheses.

NONINDEPENDENCE AND 
MULTILEVEL REGRESSION

One might speculate whether it is necessary to use 
more complicated multilevel techniques when it 
appears that simpler techniques (e.g., ordinary  
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FIGURE 17.5.  Simple linear regression of counterproductive workplace behaviors 
onto trait aggression for each of the 60 groups.
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least squares [OLS] regression or analysis of 
covariance [ANCOVA]) may be suited for testing 
hypotheses such as those noted earlier in the 
chapter. For example, we could test a regression 
model that includes a term representing AGG,  
a term representing COH, and a term representing 
the cross-product of AGG with COH (AGG * COH). 
Alternatively, we could simply add the group-
level cohesion scores to the data in Table 17.1 and 
then use those scores to predict the regression 
coefficients. That is, we could examine whether the 
variability in COH overlaps with the variability in 
intercepts (β0) and slopes (β1). At first blush, either 
of these strategies seems to be a reasonable approach 
to testing our hypotheses. However, as we will see, 
these approaches fail to properly account for the fact 
that employees are nested within groups.

OLS is a very powerful, simple, and effective 
estimation procedure. For example, when errors  
(a) have a mean of zero, (b) are identically distributed, 
and (c) are uncorrelated with one another, the 
OLS estimates are said to be “BLUE”—the Best 
Linear Unbiased Estimates (Cohen, Cohen, West, 

& Aiken, 2003; Myers, 1990). If the errors are also 
normally distributed, the OLS estimates are said 
to be “MVUE”—the minimum variance unbiased 
estimates (Cohen et al., 2003; Myers, 1990). 
Unfortunately, when data are nested, the errors are 
frequently nonindependent. This nonindependence 
is visually depicted in Figure 17.6, which contains 
an analysis of the data from the first two groups 
in our example. When we separately estimate 
regression lines for each group, we see that Group 1 
(thin dashed line) has a very steep slope, whereas 
Group 2 (thin dot-dash line) is flatter. However, if 
we ignored group membership and simply analyzed 
the data from all 20 employees, we would obtain 
a common regression line (thick solid line). The 
fact that these data are nonindependent is easily 
observed when considering the implications of using 
the common regression line to predict CWBs using 
AGG scores. Essentially, using the common line 
will tend to underestimate the predicted scores for 
employees working in Group 1 and overestimate the 
predicted scores for employees working in Group 2. 
The problem of nonindependence may also be 
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FIGURE 17.6.  Simple linear regression of counterproductive 
workplace behaviors onto trait aggression using data from the  
first two groups.
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observed by comparing the equations that would 
be tested using OLS to the equation that we will 
eventually test using MLR.

Single-Level Regression Approach
To illustrate the differences between the single-
level OLS approach and the MLR approach we will 
examine the equations that each approach would 
use for testing a common “main effects” model. 
The OLS approach essentially relies on an analysis 
of covariance (James & Williams, 2000; Kreft & 
de Leeuw, 1998; Raudenbush & Bryk, 2002):

( ) ( )= β + β + β +CWB AGG COH eij ij j ij, (17.1)0 1 2

where i = 1 to nj Level-1 units (e.g., employees; 
children) nested within the j = 1 to J Level-2 units 
(e.g., teams; classrooms). Thus, in our example, 
AGGij refers to the trait aggression score for the ith 
employee working in the jth group and COHj refers 
to the cohesion score for group j, which is computed 
as the mean taken over the nj employees nested 
in that group. The βs represent unstandardized 
regression coefficients and eij represent the unique 
error for employee i nested in group j.

To summarize, the OLS approach is represented 
by Equation 17.1 and consists of our outcome 
variable, a single (fixed) intercept coefficient, two 
fixed slope coefficients, and a single error term. 
As we will see, reliance on a single error term is 
problematic because we are unable to properly 
model potential dependencies in the data attributed 
to the nesting of the Level-1 units within the Level-2 
units. As a result, estimates of error variance may be 
biased, resulting in biased standard errors and tests 
of statistical significance. To address this issue, the 
MLR approach attempts to disentangle or partition 
the error variance into variance that resides at 
the individual level (i.e., within-group variance) 
and variance that resides at the group level (i.e., 
between-group variance).

Multilevel Regression Approach
The main effects model using MLR is a bit different 
(Hox, 2010; Kreft & de Leeuw, 1998; Raudenbush 
& Bryk, 2002):

Level 1: (17.2)0 1CWB AGG rij j j ij ij)(= β + β +

Level 2: (17.3)0 00 01 0COH Uj j j)(β = γ + γ +

β = γj , (17.4)1 10

where β represent Level-1 random regression 
coefficients (i.e., coefficients that may vary across 
groups), g represent the Level-2 fixed regression 
coefficients (i.e., coefficients that are invariant 
across groups), rij is the Level-1 random effect, and 
U0j is the Level-2 random effect. Substituting the 
Level-2 equations into the Level-1 equations, we 
obtain the mixed equation

[ ]
[ ]

( )

( )

= γ + γ +

+ γ +

CWB COH U

AGG r

j j j

ij ij. (17.5)

1 00 01 0

10

Returning to Equation 17.5, the elements in the 
first set of brackets provide information about the 
unique intercept for group j (i.e., β0j). This intercept 
is a function of (a) a fixed intercept coefficient (g00) 
representing a common or pooled intercept applied to 
all individuals in all groups, (b) the effect of group j’s 
score on COHj (g01), and (c) a unique effect (i.e., error) 
that is applied to only the members of group j (U0j). 
Because each group will have a unique, group-level 
effect (i.e., each group has a different score on U0j), 
the variability in these group-level scores represents 
the between-groups variability in intercepts (i.e., the 
extent that groups assume different intercept values, 
even after modeling COHj and AGGij).

The elements in the second bracket provide 
information about the unique slope for group j  
(i.e., β1j). In the “main effects only” model, the unique 
slope for group j isn’t really unique, but instead is 
fixed to common value across all groups: g10. Later in 
the chapter, we illustrate how it is possible to estimate 
separate group-level slopes. To further the comparison 
with OLS, Equation 17.5 may be rewritten as

( ) ( )= γ + γ + γ

+ +

CWB AGG COH

U r

ij ij j

j ij. (17.6)

00 10 01

0

Comparison of Equations 17.1 and 17.6 reveals the 
similarities and differences between these approaches. 
In terms of similarities, both approaches furnish 
estimates of three (fixed) regression coefficients. These 
coefficients represent (a) a fixed intercept (i.e., β0 for 
OLS; g00 for MLR), (b) a fixed slope representing the 
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strength of the relationship between CWB and AGG 
(i.e., β1 for OLS; g10 for MLR), and (c) a fixed slope 
representing the cross-level effect of COH on CWB 
(i.e., β2 for OLS; g01 for MLR).

The fundamental difference is found in the 
error terms. The OLS approach contains a single 
error term (i.e., eij), whereas the MLR approach 
includes two error terms—one that is unique to the 
employee (i.e., rij) and one that is applied to all of 
the employees nested within a common group (i.e., 
U0j). Thus, the MLR approach partitions errors into 
a component that resides within groups (i.e., rij) 
and a component that resides between groups  
(i.e., U0j). By appropriately partitioning these errors, 
we are able to obtain unbiased estimates of the 
standard errors and thus unbiased tests of statistical 
significance (Bliese & Hanges, 2004; Raudenbush  
& Bryk, 2002).

We now turn to a detailed, step-by-step tutorial 
on how researchers may go about building and 
testing models within an MLR framework. To 
facilitate our tutorial, we will analyze and interpret 
data corresponding to the illustrative example 
presented earlier in the chapter.

MULTILEVEL REGRESSION:  
A MODEL-BUILDING APPROACH

With a basic grasp of the tenets underlying MLR in 
place, we now turn to our illustrative example and 
our tutorial on MLR. Our tutorial adopts a model-
building/model comparison perspective (Aguinis 
& Culpepper, 2015; Bliese & Ployhart, 2002; 
Hofmann, 1997; Hofmann, Griffin, & Gavin, 2000) 
and is structured as follows. First, for each model, 
we provide a general introduction/overview of the 
structural equations to be tested. Next, we discuss 
the interpretation of the regression coefficients and 
variance components associated with each model. 
Finally, we test each model using our illustrative 
example data, and provide a brief interpretation of 
the results.

Model 1: Null Model or the 
Unconditional ANOVA Model
Overview.  Researchers with nested data are 
encouraged to test the extent to which their 

data may violate the independence assumption 
underlying the use of OLS. This is accomplished 
by conducting a simple, one-way ANOVA on 
the dependent variable (e.g., CWBij), where we 
treat group membership as a “grouping” variable 
or factor in a one-way random effects ANOVA. 
The Null model is so named because it does not 
include any Level-1 or Level-2 predictor variables. 
As we illustrate, the Null model partitions the 
variance in the outcome or dependent variable 
into a component that resides within groups  
and a separate component that resides between 
groups. If the nesting of Level-1 units (e.g., 
employees) within Level-2 units (e.g., groups or 
teams) violates the independence assumption, 
we would expect to see that group membership 
explains a nontrivial amount of variance in 
our dependent variable. Using the notation of 
Raudenbush and Bryk (2002), the Null model 
may be presented as

Level 1: (17.7a)0CWB rij j ij= β +

β = γ + Uj jLevel 2: , (17.8a)0 00 0

where, β0j = the mean CWB score for group j,  
g00 = grand mean score on CWB based on data 
from all individuals in all groups, rij = Level-1 
residual for person i in group j (i.e., the deviation 
between a person’s CWB score and his or her 
group’s mean), and U0j = Level-2 residual for 
group j (i.e., the deviation between the mean 
for group j and the grand mean). Substituting 
Equation 17.8 into Equation 17.7 yields the 
“mixed” equation:

= γ + +CWB U rij j ijMixed: . (17.9a)00 0

This equation states that the CWB score for 
person i nested in group j is a function of (a) a 
common or grand mean, (b) the extent to which 
their group mean deviates from the grand mean, 
and (c) the extent to which their individual score 
deviates from the group mean.

Raudenbush and Bryk (2002) noted that 
Equation 17.8 represents a one-way random  
effects ANOVA model because “the group effects 
are construed as random” (p. 24). And the  
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total variance (VAR) in CWBs may be partitioned 
thusly:

VAR CWB VAR (17.10a)00 0U rij j ij )()( = γ + +

( )( ) ( )

( )

= γ +

+

U

r

ij j

ij

VAR CWB VAR VAR

VAR . (17.10b)

00 0

Because the grand mean is a constant (i.e., it has 
no variance), it drops out of the equation:

( )( ) = +U rij j ijVAR CWB VAR . (17.11)0

And, assuming that the data meet requisite 
assumptions concerning the independence of 
Level-1 and Level-2 errors (see Raudenbush &  
Bryk, 2002):

( ) = τ + σijVAR CWB , (17.12a)00
2

where τ00 = the variance in CWB scores that resides 
between groups (i.e., the variance in U0j) and  
σ2 = to the variance in CWB scores that resides 
within groups (i.e., the variance in rij). If you are 
like us, the first time you see these equations, 
you may have a difficult time making the 
connection between the MLR notation and the 
basic ANOVA model that is purportedly being 
tested using Equations 17.7a–17.9a). However, the 
connection becomes clearer with a slightly different 
representation of these equations.

Alternative notation.  First, we will replace CWBij 
with the more commonly used Yij and rewrite 
Equations 17.7 and 17.8 using a conventional 
ANOVA notation:

Level 1: (17.7b)Y Y rij j ij= +

= +Y Y Uj jLevel 2: , (17.8b)0

where, Y
_

j = the mean outcome score for group j, 
Y
=

 = grand mean score on the outcome based on 
scores from all individuals in all groups, rij = Level-1 
residual for person i in group j (i.e., the deviation 
between a person’s outcome score and his or her 
group’s mean; (Yij – Y

_
j)), and U0j = Level-2 residual 

for group j (i.e., the deviation between the mean for 
group j and the grand mean; (Y

_
j – Y

=
). Substituting 

Equation 17.8a into Equation 17.7a yields the 
“mixed” equation:

= + +Y Y U rij j ijMixed: , (17.9b)0

which is equivalent to

( ) ( )= + − + −Y Y Y Y Y Yij j ij jMixed: . (17.9b2)

The first step in estimating the variance in Yij  
is to compute the sum of squared deviations 
between Yij and the grand mean, Y

=
:

(17.9b3)

2

2

∑∑ (( ) ( )
)( )

− = + −

+ − − 

Y Y Y Y Y

Y Y Y

ij j

ij j

∑ ∑

∑

( ) ( )
( )

− = −

+ −

Y Y Y Y

Y Y

ij j

ij j . (17.9b4)

2 2

2

We then divide these sums by the appropriate 
degrees of freedom to obtain estimates of means 
squares and eventually variance components:

1 1
(17.9b4)

2 2
2∑ ∑ ∑( ) ( ) ( )−

−
=

−
−

+
−
−

Y Y

N

Y Y

J

Y Y

N J

ij j ij j

( ) = τ + σYijVAR . (17.12b)00
2

Interpreting the regression coefficients.  Another 
way to approach the interpretation of the multilevel 
notation is to consider the meaning of the regression 
coefficients presented in Equations 17.7a through 
17.9a. Equation 17.7a is simply stating that, absent 
any other information about the i individuals nested 
in group j, the best “estimate” for each person’s 
outcome scores (i.e., CWBij) will be the mean 
CWB score for group j (β0j in Equation 17.7a and 
Y
_

j in Equation 17.7b). The group mean will be an 
imperfect estimate of the individual scores, and this 
imperfection is manifested as error (rij). Equation 17.8a 
is simply stating that, absent any other information 
about the j groups, the best “estimate” for each 
group mean (denoted β0j in Equation 17.8a and Y

_
j in 

Equation 17.8b) is the grand mean (denoted g00 in 
Equation 17.8a and Y

=
in Equation 17.8b). The grand 
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mean will be an imperfect estimate of the group 
means and this imperfection is manifested as  
error (U0j).

Variance decomposition and interpretation.   
The variance components computed from the 
Null model allow us to estimate the proportion 
of variance in CWBs that resides between and 
within groups. This variance ratio will enable us 
to determine if the nesting of Level-1 units within 
Level-2 units has resulted in a violation of the 
independence assumption. Formally, this variance 
ratio is defined as the intraclass correlation 
obtained from a one-way random effects ANOVA 
(Bliese, 2000; James, 1982; Raudenbush &  
Bryk, 2002):

( ) = τ
τ + σ

ICC 1 . (17.13)00

00
2

Returning to our original hypotheses, we are 
hoping to predict a portion of the within-groups 
(i.e., employee-level) variance in CWBs using 
our employee-level predictor (AGG) and we are 
hoping to predict some of the variability in group-
level intercepts and slopes using our group-level 
predictor (COH). Thus, it is important that we 
establish that the variance in CWBs exists both 
within and between groups. In other words, if 
there is no meaningful within-group variance in 
CWBs, it is unlikely that AGG will emerge as a 
significant predictor of CWBs. Likewise, if CWB 
scores do not vary between groups, it is unlikely 
that COH will emerge as a significant predictor 
of CWBs.

Model 1: Illustrative example.  Appendix 17.1 
contains the R code used to analyze the data  
in our illustrative example (R Development Core 
Team, 2017). The opening lines of Appendix 17.1 
address data management issues and the install-
ation of the R packages we use in our data 
analysis. For most of our analyses, we use pre-
defined functions that are part of the multilevel 
package and the nlme package. Specifically, we rely 
heavily on the linear mixed effects (lme) function 
that we use to test the Null model presented 
in Equations 17.7 and 17.8. The lme function 
requires the user to identify the outcome variable, 

specify which effects will be treated as fixed and 
which will be treated as random, and to specify the 
grouping (nesting) variable corresponding to those 
random effects.

Fixed effects refer to the effects in Equations 17.7a 
 and 17.8a that do not vary and reside at Level 2.  
In our example, the fixed effects are represented 
using g. In contrast, the random effects are the 
effects that are allowed to vary across groups  
(e.g., U0j) and within groups (e.g., rij). The R code  
to estimate the Null model is

Null.Model = lme(CWB~1, random =  
~1|GROUP, data = mlr)

The above code accomplishes the following:

■■ It creates a new “object” in the R environment 
called Null.Model. And it assigns to this new 
object the results of the lme function.

■■ The first argument needed for the lme function is 
the name of our outcome variable, CWB, which 
is regressed on our mixed effects model. This 
regression is denoted by ~.

■■ The second argument identifies the fixed 
component of the mixed effects regression. In 
the case of the Null model, we have a single 
fixed effect (i.e., the grand mean of CWB). 
Referring back to Equation 17.8a, we see that 
this grand mean is represented by the fixed 
regression coefficient, g00. Readers familiar with 
the matrix algebra representation of multiple 
regression may recall that it is necessary 
to append a vector of “1s” to the matrix of 
predictor variables in order to estimate the 
intercept. Thus, R uses the number “1” to 
represent intercepts.

The third argument identifies the random 
component of the mixed effects regression. Here 
we set this component equal to the regression of 
CWBs onto random intercepts. In addition, it is 
necessary to identify the grouping variable for which 
unique intercepts are estimated. In our case, this 
is simply the group identifier variable. Thus, the 
random component is given by using the syntax 
“random=~1|GROUP”.
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Finally, we identify the dataframe we are 
analyzing. In our case, our data are stored in a 
file called mlr (consistent with our chapter title, 
multilevel regression) thus the final argument for 
the lme function is simply “data=mlr”.

Essentially, the above code runs the Null model 
and saves the output to a new object called Null.
Model. To see a summary of the results we simply 
apply the summary function to the Null.Model. We 
present a portion of this output here:

summary(Null.Model)

Random effects:
 Formula: ~1 | GROUP
 (Intercept) Residual
StdDev: 0.50181 0.7770552

Fixed effects: CWB ~ 1

Value Std.Error DF

(Intercept) 1.858667 0.07213353 540

t-value p-value

(Intercept) 25.76703 0

Number of Observations: 600
Number of Groups: 60

The above output includes information about 
the single fixed effect that we estimated—the 
grand mean on CWBs (g00 = 1.86); this number 
is statistically significantly different from zero 
(which may or may not have substantive meaning, 
depending on the specific research questions 
being addressed). We interpret this coefficient as 
indicating that, on average, employees engaged 
in limited acts of CWB (i.e., a 1.86 is a relatively 
low average given a 7-point Likert-type scale). 
In addition, information is presented about the 
random effects. Specifically, τ00 (i.e., the variance in 
intercepts/the variance in CWBs residing between 
groups) and σ2 (i.e., the variance within groups). 
Unfortunately, this information is presented 
as standard deviations rather than variance 
components. Thus, one either needs to manually 
convert these estimates to variance components by 
squaring them or apply the VarCorr function to the 
Null.Model object.

VarCorr(Null.Model)

GROUP = pdLogChol(1)

 Variance StdDev
(Intercept) 0.2518133 0.5018100
Residual 0.6038148 0.7770552

We can use these variance components to 
compute the ICC(1) using Equation 17.13. Here we 
see that approximately 29% of the variance in CWBs 
resides between groups (i.e., .2518133/(.2518133 +	
.6038148) = 0.2943023), and thus 71% of the variance 
resides within groups. LeBreton and Senter (2008) 
noted that ICC(1) values of .05 or larger may be 
interpreted as indicative of practically significant 
nesting effects. In addition, we can test whether 
the between-groups variability is statistically 
significantly different from zero by comparing the 
Null model to a model that constrains the intercepts 
to be fixed. This is accomplished by estimating the 
fixed regression using the gls function in R and then 
comparing the overall fit of the two models using 
the anova function with a likelihood ratio test.

Null.Model.2 = gls(CWB~1, data=mlr)
anova(Null.Model, Null.Model.2)

Model df AIC BIC logLik Test
Null.Model 1 3 1507.031 1520.217
Null.Model.2 2 2 1614.235 1623.025

Model df L.Ratio p-value
Null.Model –750.5154 
Null.Model.2 –805.1175 1 vs 2 109.2041 < .0001

The above results indicate that constraining the 
intercepts to be equal results in a statistically worse-
fitting model. Stated alternatively, the variance in 
intercepts that was estimated as part of the Null 
model is statistically significantly different from 
zero—or simply stated, there is significant between-
groups variance in CWB scores. Overall, we conclude 
that there is sufficient between-groups variance to 
warrant adopting MLR to test our hypotheses.

Model 2: Random Coefficient  
Regression Model
Overview.  After establishing that the CWB scores 
vary both within and between groups, we may begin 
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adding predictors to our model to try and explain 
some of this variability. This new model is denoted 
the random coefficient regression (RCR) model. We 
typically proceed by adding lower level predictors 
into the model before adding in the higher level 
predictors. Hypothesis 1 states that individual-level 
AGG will be positively related to individual-level 
CWBs. Thus, we will proceed by including AGG 
scores as a Level-1 predictor of CWBs. However, 
before adding these variables to our model, there are 
two important decisions that must be made.

First, we must decide how to “scale” the Level-1 
predictor, AGG. Although our measure of AGG has 
a meaningful zero point, many measures used in 
the social sciences do not. A meaningful zero point 
is important because it allows for a meaningful 
interpretation of intercepts. To provide scales with a 
meaningful zero point, researchers typically center 
scores around a mean—either a grand mean or the 
group mean. Grand mean centering yields results  
that are identical to using the raw data (with the 
exception of the intercepts, because one is simply 
adding or subtracting the same constant value from 
every score; Hofmann & Gavin, 1998; Kreft & de 
Leeuw, 1998; Raudenbush & Bryk, 2002). Thus,  
the variance does not change nor does the covariance 
between a grand mean-centered variable and the 
other variables in the analysis. In contrast, group 
mean centering (also referred to as centering within 
context; Zhang, Zyphur, & Preacher, 2009) will 
typically yield results that differ from both the raw 
data and the grand mean-centered data. In the case 
of Hypothesis 1, we are interested in the individual-
level effect of AGG and thus we want to purge any 
possible group-level effect from our data. This is 
accomplished by centering each of the AGGij scores 
around their respective group means, AGG

____
j. To verify 

that we have eliminated all between-group differences 
in aggression by group mean-centering the scores, 
we can run a one-way ANOVA on the centered scores 
or simply request a summary of group means on 
the centered scores. The ANOVA returns an F-value 
of 1 and the summary of group means reveals that 
each group now has a mean of zero; thus, because all 
groups have identical group means, one can verify 
that there is no between-groups variability in the 
group mean-centered AGG scores.

Second, we must decide which regression 
coefficients to treat as random. Looking ahead, 
we see that Hypothesis 2 is essentially a “main 
effect” hypothesis suggesting that fewer CWBs 
will be observed as group COH scores increase. 
This main effect is manifested as variability in 
Level-1 intercepts. Thus, we will continue to treat 
the Level-1 intercepts as random and allow these 
intercepts to vary between groups. In addition, 
Hypothesis 3 represents a cross-level moderation 
hypothesis; it states that the strength of the 
relationship between AGG and CWB (i.e., Level-1 
slope) will vary as a function of group COH (i.e., 
Level-2 variable). The strength of the AGG→CWB 
relationship is manifested in the Level-1 slope 
coefficients. Thus, if we wish to establish that COH 
explains variance in the Level-1 relationship, we 
must also treat the Level-1 slopes as random.

With those decisions made, we may specify the 
structural equations for the random coefficient 
regression model:

( )= β + β − +CWB AGG AGG rij j j ij j ijLevel 1:

(17.14)
0 1

Level 2: (17.15a)0 00 0Uj jβ = γ +

β = γ + Uj j, (17.15b)0 10 1

where β0j = unique intercept for group j, β1j = the 
unique slope for group j, g00 = the average or fixed 
intercept (pooled within groups), g10 = the average 
or fixed slope (pooled within groups), rij = Level-1 
residual for individual i in group j, U0j = Level-2 
intercept residual for group j (i.e., the difference 
between the fixed intercept and the unique intercept 
assigned to group j), U1j = the Level-2 slope residual 
for group j (i.e., the difference between the fixed 
slope and the unique slope assigned to group j).

As can be seen, there are two major differences 
between the Null model and the RCR model. First,  
a Level-1 predictor and its corresponding β1j 
coefficient are introduced in the Level-1 equation. 
Thus, we have added the β1j coefficients as a  
second, Level-2 outcome variable. This model is 
somewhat similar to the traditional OLS regression; 
however, both the intercept and slope are allowed to 
vary across groups. This model is called the random 
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coefficient regression model because we are allowing 
the intercept and slope coefficients to vary across 
groups.

Interpreting the regression coefficients.  Whereas 
the Null model consists of a single fixed effect 
(fixed intercept), the RCR model consists of two 
fixed effects: a fixed intercept and a fixed slope. 
In the Null model, g00 is interpreted as the grand 
mean of CWB; however, in the RCR model the 
intercept takes on a new meaning: it is interpreted 
as a common (or pooled within-groups) intercept. 
Our fixed slope, g10, is interpreted as a common 
(or pooled within-groups) slope –; it represents 
the (average) relationship between individual-
level trait aggression and individual-level CWBs. 
Remember, by group mean centering AGG (i.e., 
removing the between-group variance) we obtain a 
pure estimate of the (individual-level) covariance 
between AGG and CWBs. Thus, we test Hypothesis 1 
by examining the significance of g10. In addition to 
these two fixed coefficients, separate intercepts (β0j) 
and slopes (β1j) are also estimated for each group.

Variance decomposition and interpretation.   
Whereas the Null model consisted of two random 
effects corresponding to the Level-1 error variance 
(i.e., within-groups variance in CWB) and the 
Level-2 error variance (i.e., between-groups variance 
in CWB), the RCR model consists of four random 
effects: σ2, τ00, τ11, and τ01.

Variance within groups.  First, we obtain an 
estimate of the variance in rij (i.e., σ2). This variance 
component is now interpreted as the residual within-
group variance in CWBs (i.e., the within-groups 
variance in CWBs that exists after adding centered 
AGG scores as a Level-1 predictor variable). We 
can compare the estimate obtained for σ2 from the 
RCR model with the one obtained from the Null 
model, to determine how much of the within-groups 
variance in CWBs was accounted for by our Level-1 
predictor. Specifically, we can compute an effect 
size that is interpreted as a proportional reduction 
in error (see Chapter 15 for additional information 
about estimating effect sizes in MLR):

= σ − σ
σ

R ANOVA RCR

ANOVA

pseudo- . (17.16)2
2 2

2

Variance in Level-1 intercepts.  Second, we obtain 
an estimate of the variance in U0j, denoted τ00. This 
variance component is now interpreted as the variance 
in the Level-1 intercepts across groups. Recall that 
Hypothesis 2 states COH will explain variance in 
CWBs. Because COH is a variable that resides between 
groups, it is only able to predict the portion of 
variance in CWBs that resides between groups. Thus, 
we want to confirm that there is statistically significant 
variance in intercepts. This is accomplished by testing 
two nested models: one where group-level intercepts 
are fixed to a common value, the other where they are 
allowed to take on unique values.

Variance in Level-1 slopes.  Third, because  
we decided to treat the Level-1 predictor (i.e., AGGij – 
AGG
____

j) as a random effect, we also obtained an estimate 
of the variance in U1j, denoted τ11. This variance 
component is interpreted as the variance in group-
level slopes. Recall that Hypothesis 3 states COH will 
moderate the strength of the Level-1 relationship 
between AGG and CWBs. Because COH is a variable 
that resides between groups, it is only able to predict 
variance in slopes that reside between groups. Thus, 
we want to confirm that there is statistically significant 
variance in slopes. Again, this is accomplished by 
testing two nested models: one where group-level 
slopes are fixed to a common value, and the other 
where they are allowed to take on unique values.

However, Aguinis and Culpepper (2015) 
noted several problems with relying solely on 
the test of nested models. Specifically, they noted 
that (a) the likelihood ratio test used to test for 
significant variance in slopes is asymptotically 
too conservative and (b) it is possible to conclude 
that there is statistically significant variance in 
slopes when the magnitude of slope variance is 
practically nonsignificant/trivial. To address these 
concerns, Aguinis and Culpepper offered a new 
intraclass correlation: ICCβ. This new statistic 
provides an effect size representing the proportion 
of “within-group outcome variance attributed to 
slope differences” (p. 162). Thus, the ICCβ provides 
an effect size for Model 2 (i.e., the RCR model) 
that is akin to the ICC(1) effect size estimated for 
Model 1 (i.e., the Null model). One important 
implication of Aguinis and Culpepper’s new statistic 
is that researchers interested in testing cross-level 
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interactions are encouraged to include the estimation 
of ICCβ in their model testing process, even if the 
ICC(1) does not suggest practically significant 
nesting effects. As Aguinis and Culpepper noted,

We suggest that researchers 
contemplating the use of multilevel 
[regression], as well as those who 
suspect nonindependence in their 
data structure, expand the decision 
criteria for using such data analytic 
approach to include both types of 
intraclass correlations. Continued 
use of [ICC(1)] as the sole decision 
criteria may lead to inappropriate use 
of data analytic approaches that require 
independence across observations and 
also lead to opportunity cost in terms of 
testing precise and specific cross-level 
interaction effect hypotheses. (p. 170)

We concur and encourage researchers, especially 
those testing cross-level interactions, to estimate 
both types of ICCs.

Covariance between Level-1 intercepts and slopes.   
Finally, because we allowed both intercepts and 
slopes to vary, we obtain an estimate of the covariance 
between U0j and U1j, denoted τ01. This final variance 
component is interpreted as the covariance between 
group-level intercepts and group-level slopes. 
Although this covariance is not of particular interest 
in the current study, the covariance between intercepts 
and slopes is frequently of interest in longitudinal 
studies examining growth/decline over time.

Model 2: Illustrative example.  The test of 
Hypothesis 1, which is organic to the RCR model, is 
the significance test for the Level-2 fixed effect g10. 
The g10 coefficient is the mean (pooled within-groups) 
slope coefficient across all groups. A significant g10 
coefficient tells us that, on average across all groups, 
the slope describing the individual relationship 
between CWB and AGG is significantly different 
from zero. The significance of the g10 parameter 
tells us that there is a significant individual-level 
relationship between CWB and AGG; however, this 
significance test does not provide information about 
the magnitude of the relationship, which may be 
estimated using Equation 17.16. Before using the 

RCR Model to test our example hypotheses, we will 
recap the three important pieces of information that 
this specific model provides:

■■ An estimate and significance test for Level-2 
intercept and slope variance; along with effect 
size estimates for slope variation (i.e., ICCβ),

■■ An estimate for the Level-1 relationships (direct 
test of H1), and

■■ A pseudo-R2 to evaluate the magnitude of the 
Level-1 relationships.

Prior to specifying the RCR model, we will first 
compute group-mean centered scores on our measure 
of trait aggression and add these scores to our data 
frame. To accomplish this process, we use the aggregate 
function to compute group means and save these values 
into a new data frame. We then use the rename function 
to simply assign meaningful names to the variables, 
followed by the merge function to combine the two 
data frames. Finally, we compute a new variable by 
subtracting group means from raw scores and saving 
the centered scores as a new variable in our data frame.

AGG.Aggregated=aggregate(mlr[,c(2)], 
list(mlr$GROUP), mean, na.rm=T)

AGG.Aggregated=rename(AGG.Aggregated, 
replace=c(“Group.1”=“GROUP”, 
“x”=“AGG.GroupMean”))

mlr=merge(mlr,AGG.Aggregated,by=“GROUP”)
mlr$AGG.Group=mlr$AGG-mlr$AGG.

GroupMean

Now that we have properly scaled our measure 
of trait aggression (AGG), we can write and execute 
the R code to test the RCR model:

RCR.Model=lme(CWB~1+AGG.Group, 
random=~1+AGG.Group|GROUP,data=mlr)

The above code accomplishes the following:

■■ It creates a new “object” in the R environment called 
RCR.Model, and it assigns to this new object the 
results of the linear mixed effects (lme) function.

■■ The first argument needed for the lme function is 
the name of our outcome variable, CWB, which 
is to be regressed on our mixed effects model. 
This regression is denoted by ~ .
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■■ The second argument identifies the fixed 
component of the mixed effects regression. In 
the case of the RCR model, we have two fixed 
effects (i.e., a fixed intercept and a fixed slope for 
the group-mean centered aggression scores; see 
Equations 17.15a and 17.15b).

■■ The third argument identifies the random 
component of the mixed effects regression. Here 
we set this component equal to the regression of 
CWBs onto both random intercepts and slopes 
(see Equation 17.14). In addition, we also  
must identify the grouping variable. Thus, the 
random component is given by using the syntax 
random = ~1+AGG.Group|GROUP.

■■ Finally, we identify our dataframe using 
data=mlr.

After running the above code, we can request 
a summary of the results and apply the VarCorr 
function to the RCR.Model and compare the results 
to the VarCorr function applied to our original Null.
Model. These variance components are used to 
compute the pseudo-R2 statistics.

summary(RCR.Model)

Linear mixed-effects model fit by REML
 Data: mlr

 AIC BIC logLik
1427.714 1454.075 –707.8569

Random effects:
 Formula: ~1 + AGG.Group | GROUP
 Structure: General positive-definite, Log-

Cholesky parametrization

 StdDev Corr
(Intercept) 0.5137365 (Intr)
AGG.Group 0.1414664 0.751
Residual 0.6947630

Fixed effects: CWB ~ 1 + AGG.Group

Value Std.Error DF

(Intercept) 1.858667 0.07213353 539

AGG.Group 0.107824 0.02484711 539

t-value p-value

(Intercept) 25.767026 0

AGG.Group  4.339498 0

Correlation:
 (Intr)

AGG.Group 0.508

Standardized Within-Group Residuals:

Min Q1 Med

–2.9409451 –0.6694657 –0.1675953

Q3 Max

0.5779086 3.8372834

Number of Observations: 600
Number of Groups: 60

VarCorr(RCR.Model)

GROUP = pdLogChol(1 + AGG.Group)

Variance StdDev Corr

(Intercept) 0.26392523 0.5137365 (Intr)

AGG.Group 0.02001274 0.1414664 0.751

Residual 0.48269566 0.6947630

Starting with the direct test of Hypothesis 1, the 
fixed effect for the Level-1 relationship between CWB 
and group-mean centered AGG (g10) is significant and 
positive; g10 = 0.11, p < .05. This significant fixed effect 
provides support for Hypothesis 1 and is interpreted as 
“for every unit increase in individual-level aggression, 
CWB scores are predicted to increase by .11 units.” 
Next, we compute a pseudo-R2 to investigate the 
magnitude of this relationship by plugging the 
appropriate variance components into Equation 17.16.

VarCorr(Null.Model) #displays variance/
covariance of parameters from ANOVA

GROUP = pdLogChol(1)

 Variance StdDev
(Intercept) 0.2518133 0.5018100
Residual 0.6038148 0.7770552

VarCorr(RCR.Model) #displays variance/
covariance of parameters from RCR

GROUP = pdLogChol(1 + AGG.Group)

Variance StdDev Corr

(Intercept) 0.26392523 0.5137365 (Intr)

AGG.Group 0.02001274 0.1414664 0.751

Residual 0.48269566 0.6947630
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The estimate of the within-groups variance in 
CWBs from the Null model (i.e., σ2

NULL) is 0.60. The 
estimate of the residual within-groups variance in 
CWBs, after controlling for group-mean centered AGG 
(i.e., σ2

RCR) is 0.48. Therefore, using Equation 17.16, 
the pseudo-R2 for the relationship between CWB 
and AGG is approximately 0.20, suggesting that 
group-mean centered AGG accounts for roughly 
20% of the within-group variance in CWB. Thus, 
not only was our predictor statistically significantly 
related to the outcome, but it appeared to explain 
a practically meaningful proportion of the within-
groups variance in CWBs. At this point, if we had 
additional Level-1 predictors (e.g., age, sex, other 
personality traits), we could add them into the 
Level-1 equation and try to explain even more of the 
within-groups variance in CWBs.

Our next two hypotheses require that we have 
significant variance in both intercepts (Hypothesis 2) 
and slopes (Hypothesis 3). It is possible to conduct 
a significance test on the variance estimates in the 
RCR.Model output by comparing the RCR.Model 
to a model that constrains the intercept and slope 
to assumed fixed values (i.e., sets the variance in 
intercepts = 0 and the variance in slopes = 0). First, 
we use gls to estimate a model with both fixed 
intercept and fixed slope:

RCR.Model.2=gls(CWB~1+AGG.Group,data=mlr)

Next we use lme to estimate a model with 
random intercepts, but with a fixed slope and 
compare this to the prior model with fixed intercept 
and fixed slope.

RCR.Model.3=lme(CWB~1+AGG.Group, 
random=~1|GROUP,data=mlr) 
anova(RCR.Model.2,RCR.Model.3)

Model df AIC BIC logLik Test
RCR.Model.2 1 3 1587.21 1600.390
RCR.Model.3 2 4 1465.15 1482.724

Model df L.Ratio p-value
RCR.Model.2  790.6048
RCR.Model.3 –728.5749 1 vs 2 124.0599 < .0001

The results indicate that the random intercepts 
model (RCR.Model.3) is a better fit to the data; thus, 

there is statistically significant variance in intercepts. 
We can repeat this process by comparing RCR.
Model.3 (i.e., random intercepts and a fixed slope) 
to the original RCR.Model (i.e., random intercepts 
and random slopes).

anova(RCR.Model.3,RCR.Model)

Abbreviated R Output:
Model df AIC BIC logLik Test

RCR.Model.3 1 4 1465.150 1482.724
RCR.Model. 2 6 1427.714 1454.075

Model df L.Ratio p-value
RCR.Model.3 –728.5749 
RCR.Model. –707.8569 1 vs 2 41.43588 < .0001

Results confirm there is also statistically 
significant variance in slopes. Stated alternatively, 
there is significant between-groups variance 
in both intercepts (τ00 = 0.26, p < .0001) and 
slopes (τ11 = 0.02, p < .0001). Consequently, we 
are justified in moving forward with our model-
building/comparison approach to test Hypotheses 2 
and 3. In addition, we could estimate the ICCβ 
using the iccbeta package in R. Unfortunately, 
this package relies on a different package (lme4) 
and a different function (lmer) for estimating 
the variance components used to estimate ICCβ 
Introducing and explaining this alternative 
package and the accompanying functions is 
beyond the scope of the current chapter. However, 
the interested reader is directed to Aguinis and 
Culpepper (2015) for an excellent discussion 
underlying the use and interpretation of ICCβ. 
Hopefully, the iccbeta package will be updated to 
allow output from the lme function that is part of 
the nlme package.

Model 3: Intercepts-as-Outcomes Model
Overview.  Hypothesis 2 proposes that our 
Level-2 predictor, COH, will explain a portion of 
the between-groups variance in CWBs. This test is 
manifested as a cross-level direct or main effect in 
our third model, the Intercepts-as-Outcomes (IAO) 
model:

CWB AGG AGG rij j j ij j ijLevel 1:

(17.14, revisited)
0 1 ( )= β + β − +
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Level 2: (17.17a)0 00 01 0COH Uj j j)(β = γ + γ +

β = γ + Uj j, (17.17b)0 10 1

where β0j = unique intercept for group j, β1j = the 
unique slope for group j, g00 = the average or fixed 
intercept (pooled within-groups), g10 = the average 
or fixed (pooled within-groups) slope corresponding 
to the group-mean centered aggression scores,  
g01 = fixed slope corresponding to the effect of 
group-level COH, rij = Level-1 residual for individual i 
in group j, U0j = Level-2 intercept residual for group j 
(i.e., the difference between the fixed intercept  
and the unique intercept assigned to group j),  
U1j = the Level-2 slope residual for group j (i.e., the 
difference between the fixed slope and the unique 
slope assigned to group j). The IAO model is similar 
to the RCR model. The primary difference is the 
introduction of a Level-2 predictor (COHj) in the 
Level-2 intercept equation (17.17a). There are 
two important consequences that occur when we 
introduce a Level-2 predictor of β0j. Adding COH 
to the Level-2 intercept equation (a) changes the 
interpretation of τ00 and (b) introduces a new fixed 
effect (g01) into the Level-2 intercept equation.

Interpreting the regression coefficients.  Our IAO 
model consists of three fixed effects: a fixed intercept 
and two fixed slopes. The fixed intercept, g00, is still 
interpreted as a common (or pooled within-groups) 
intercept. Our fixed slope, g10, is interpreted as a 
common (or pooled within-groups) slope— 
it represents the (average) relationship between 
individual-level trait aggression and individual-
level CWBs. The final fixed effect, g01, is interpreted 
as a common (or pooled within-groups) slope—it 
represents the (average) relationship between group-
level cohesion scores and (the between-groups 
portion of) individual-level CWBs.

Variance decomposition and interpretation.
Variance within groups.  This model will con-

tinue to generate an estimate of within-groups resid-
ual error variance (i.e., the within-groups variance 
in CWBs that exists after including group-mean cen-
tered trait aggression scores in the model). Because 
we have not made any changes to the Level-1 equa-
tion, the σ2 estimate from the IAO model is typically 

the same as what was observed in the RCR model. 
However, it is possible for these estimates to change 
slightly.

Variance in Level-1 intercepts.  In contrast, our 
estimate of the variance in U0j, denoted τ00, typically 
will change when compared to the estimate that 
was obtained using the RCR model. This variance 
component is now interpreted as the residual 
variance in the Level-1 intercepts that remains  
after including COH in the model. It is possible to 
use the variance components from the RCR and 
IAO models to obtain a pseudo-R2 for our Level-2 
predictor (again, we encourage readers to refer 
to Chapter 15 for additional information about 
estimating effect sizes in MLR). Although there 
are several options for estimating effect sizes,  
we opted to compute a pseudo-R2 using the  
τ00 estimate from the RCR model and the  
τ00 estimate from the IAO model:

= τ − τ
τ

( ) ( )

( )

R

RCR IAO

RCR

Level-2 intercept model pseudo-

. (17.18)

2

00 00

00

Finally, we can also test whether the remaining 
variance in intercepts is statistically significant by 
comparing two nested models: one where group-
level intercepts are fixed to a common value, and 
the other where they are allowed to take on unique 
values. If τ00 from the IAO model is statistically 
significant, we could try to explain this residual 
between-groups variance in intercepts by adding in 
additional group-level variables (e.g., group size, 
group age).

Variance in Level-1 slopes.  Because we continued 
to treat the Level-1 predictor (i.e., AGGij – AGG

____
j) as 

a random effect, we also obtain an estimate of the 
variance in U1j, denoted τ11. This variance component 
is interpreted as the variance in group-level slopes. 
Recall that Hypothesis 3 states COH will moderate 
the strength of the Level-1 relationship between AGG 
and CWBs. Thus, we want to confirm that there 
is statistically significant variance in slopes across 
groups. Again, this is accomplished by comparing 
two nested models: one where group-level slopes are 
fixed to a common value, the other where the group-
level slopes are allowed to take on unique values.
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Covariance between Level-1 intercepts and slopes.   
Finally, because we allowed both intercepts and 
slopes to vary, we will continue to obtain an estimate 
of the covariance between U0j and U1j, denoted τ01. 
This final variance component is interpreted as 
the covariance between group-level intercepts and 
group-level slopes.

Model 3: Illustrative example.  The test of 
Hypothesis 2 is furnished by the significance test  
on the fixed regression weight, g01. We specify the 
IAO model in R:

IAO.Model=lme(CWB~1+AGG.Group+COH, 
random=~1+AGG.Group|GROUP,data=mlr)

The above code simply augments the fixed 
portion of the mixed regression by requesting 
a slope coefficient for the COH variable. After 
requesting a summary of the results, we find that 
there is a significant main effect of COH on CWB 
(g01 = –0.61, p < .05), suggesting that for every unit 
increase in group-level cohesion scores, CWBs 
decrease by .61 units. Thus, as groups become more 
cohesive, individuals within those groups are (on 
average) less likely to engage in CWBs.

summary(IAO.Model)

Linear mixed-effects model fit by REML
 Data: mlr
  AIC BIC logLik
1409.822 1440.565 –697.9109

Random effects:
 Formula: ~1 + AGG.Group | GROUP
 Structure: General positive-definite, Log-

Cholesky parametrization

 StdDev Corr
(Intercept) 0.3754431 (Intr)
AGG.Group 0.1426068 0.63
Residual 0.6950287

Fixed effects: CWB~ 1 + AGG.Group + COH

Value Std.Error DF

(Intercept) 5.237037 0.6025813 539

AGG.Group 0.107299 0.0251456 539

COH –0.613264 0.1089084 58

t-value p-value

(Intercept)  8.691006 0

AGG.Group  4.267102 0

COH –5.631011 0

We obtain estimates of the variance components 
using the VarCorr function and compare the 
between-groups variance in intercepts from the  
RCR model to the residual between-groups variance 
in intercepts from the IAO model.

VarCorr(RCR.Model)

GROUP = pdLogChol(1 + AGG.Group)

Variance StdDev Corr

(Intercept) 0.26392523 0.5137365 (Intr)

AGG.Group 0.02001274 0.1414664 0.751

Residual 0.48269566 0.6947630

VarCorr(IAO.Model)

GROUP = pdLogChol(1 + AGG.Group)

Variance StdDev Corr

(Intercept) 0.14095753 0.3754431 (Intr)

AGG.Group 0.02033669 0.1426068 0.63

Residual 0.48306484 0.6950287

Specifically, we estimate a pseudo-R2 using 
Equation 17.18 and obtain a value of .46 (i.e.,  
[0.26–0.14]/0.26 = .46), which indicates that by 
adding COH to the model, we were able to explain 
roughly 46% of the between-groups variance 
in intercepts. It is possible to test whether the 
remaining variance in intercepts is statistically 
significant by comparing a model that constrains  
the intercepts to be fixed to a model that frees them 
to vary. First, we use gls to estimate a model with 
both fixed intercept and fixed slope:

IAO.Model.2=gls(CWB~1+AGG.Group+COH, 
data=mlr)

Next, we use lme to estimate a model with 
random intercepts, but with fixed slopes:

IAO.Model.3=lme(CWB~1+AGG.Group+COH, 
random=~1|GROUP,data=mlr)
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Comparing the fit of these models indicates 
that even after including our significant predictor 
(COH), the remaining (i.e., residual) variance in 
intercepts is statistically significant. Thus, if we had 
additional predictors of group intercepts, we could 
attempt to predict some of the remaining variance 
by including those predictors in Equation 17.17a.

anova(IAO.Model.2,IAO.Model.3)

Model df AIC BIC logLik Test
IAO.Model.2 1 4 1488.774 1506.341
IAO.Model.3 2 5 1437.808 1459.767

Model df L.Ratio p-value
IAO.Model.2 –740.3869
IAO.Model.3 –713.9038 1 vs 2 52.96621 < .0001

Finally, we can compare the fit of IAO.Model.3 to 
the original IAO.Model to confirm that the variance 
in slopes continues to be significant, and thus we 
are justified in moving forward to test our third 
and final hypothesis. Not surprisingly, the variance 
in slopes is statistically significant. Thus, we will 
proceed to test Hypothesis 3, which states that COH 
will help to explain some of the variance in slopes 
(i.e., group-level COH will moderate the strength of 
the relationship between employee-level AGG and 
employee-level CWB).

anova(IAO.Model.3,IAO.Model)

Model df AIC BIC logLik Test
IAO.Model.3 1 5 1437.808 1459.767
IAO.Model. 2 7 1409.822 1440.565

Model df L.Ratio p-value
IAO.Model.3 –713.9038
IAO.Model –697.9109 1 vs 2 31.98579 < .0001

Model 4: Slopes-as-Outcomes Model
Overview.  Hypothesis 3 proposes that our Level-2 
variable, COH, will moderate the relationship 
between our Level-1 variables, AGG and CWB. 
This test is manifested as a cross-level interaction in 
our fourth model, the Slopes-as-Outcomes (SAO) 
model:

CWB AGG AGG rij j j ij j ijLevel 1:

(17.14, revisited)
0 1 ( )= β + β − +

Level 2: (17.17a)0 00 01 0COH Uj j j)(β = γ + γ +

( )β = γ + γ +COH Uj j j, (17.19)1 10 11 1

where β0j = unique intercept for group j, β1j = the 
unique slope for group j, g00 = the average or fixed 
intercept (pooled within-groups), g10 = the average  
or fixed (pooled within-groups) slope corresponding 
to the group-mean centered aggression scores,  
g01 = the fixed slope corresponding to the effect of 
group-level COH, g11 = fixed slope corresponding to 
the relationship of group-level COH to the Level-1 
slopes (β1j), rij = Level-1 residual for individual i  
in group j, U0j = Level-2 intercept residual for  
group j (i.e., the difference between the fixed 
intercept and the unique intercept assigned to  
group j), U1j = the Level-2 slope residual for group j 
(i.e., the difference between the fixed slope and 
the unique slope assigned to group j). The SAO 
model is similar to the IAO model. The primary 
difference is the introduction of a Level-2 predictor 
(COHj) in the Level-2 slope equation (17.19). There 
are two important consequences that occur when 
we introduce a Level-2 predictor of β1j. Adding 
COH to the Level-2 slope equation (a) changes the 
interpretation of τ11, and (b) introduces a new fixed 
effect parameter (g11).

Interpreting the regression coefficients.  Our  
SAO model consists of four fixed effects: a fixed 
intercept and three fixed slopes. The fixed intercept, 
g00, is still interpreted as a common (or pooled 
within-groups) intercept. Our fixed slope, g10, is 
interpreted as a common (or pooled within-groups) 
slope—it represents the (average) relationship 
between individual-level trait aggression (AGG) 
and individual-level CWBs. The fixed slope, g01, 
is interpreted as a fixed slope representing the 
(average) relationship between group-level cohesion 
scores and the between-groups portion of individual-
level CWBs. Finally, g11, is interpreted as a fixed 
slope representing the relationship between group-
level cohesion scores and the Level-1 slopes (β1j). 
If g11 is positive, it indicates that as COH increases 
(i.e., groups become more cohesive), the bivariate 
relationship between employee-level AGG and CWB 
also increases. If g11 is negative, it indicates that as 
COH increases (i.e., groups become more cohesive), 
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the relationship between individual-level AGG and 
CWB decreases. Based on Hypothesis 3, we are 
hoping to see a significant negative g11 coefficient.

Variance decomposition and interpretation.
Variance within groups.  This model will 

continue to generate an estimate of within- 
groups residual error variance (i.e., the within-
groups variance in CWBs that exists after  
including group-mean centered AGG scores  
in the model). Because we have not made any 
changes to the Level-1 equation, the σ2 estimate 
from the SAO model is typically the same as  
what was observed in the RCR and IAO models. 
However, it is possible for these estimates to  
change slightly.

Variance in Level-1 intercepts.  Similarly, our 
estimate of the variance in U0j, denoted τ00, is 
unlikely to change dramatically from what was 
observed in the IAO model, because we have not 
modified Equation 17.17a. This variance component 
is still interpreted as the residual variance in the 
Level-1 intercepts that remains after including  
COH in the model.

Variance in Level-1 slopes.  In contrast, our 
estimate of the variance in U1j, denoted τ11, takes 
on new meaning in the SAO model. Specifically, 
this variance component is interpreted as the 
residual variance in group-level slopes that remains 
after including COHj as a predictor of slopes (see 
Equation 17.19). It is possible to use the variance 
components from the IAO and SAO models to 
obtain a pseudo-R2 for our Level-2 predictor. For  
our estimate of pseudo-R2, we rely on the τ11 
estimate from the IAO model and the τ11 estimate 
from the SAO model:

= τ − τ
τ

( ) ( )

( )

R

IAO SAO

IAO

Level-2 intercept model pseudo-

. (17.20)

2

11 11

11

This coefficient is interpreted as an effect size, 
representing the proportion of variance in slopes 
that is explained using group-level COH scores. 
Finally, we can also test whether the remaining 
variance in slopes is statistically significant by 
comparing two nested models, one where group-

level slopes are fixed to a common value the other 
where they are allowed to take on unique values. 
If the residual variance, τ11, from the SAO model 
is statistically significant, we could try to explain 
this variance by adding in additional group-level 
variables (e.g., group size, group structure, group 
age) as predictors of Level-1 slopes.

Covariance between Level-1 intercepts and 
slopes.  Finally, because we allowed both intercepts 
and slopes to vary, we will continue to obtain an 
estimate of the covariance between U0j and U1j, 
denoted τ01. This final variance component is 
interpreted as the covariance between group-level 
intercepts and group-level slopes.

Model 4: Illustrative example.  The test of 
Hypothesis 3 is furnished by the significance  
test on the fixed regression weight, g11. We specify 
the SAO model in R:

SAO.Model=lme(CWB~1+AGG.Group+COH+�
AGG.Group:COH,random=~1+AGG.
Group|GROUP,data=mlr)

The above code simply augments the fixed 
portion of the mixed regression by including 
a cross-product term between employee-level 
(group-mean centered) aggression and group-level 
cohesion. In R, cross-products between specific 
variables are specified using a colon (:) rather 
than an asterisk (*), which is more commonly 
used in other software packages. After requesting 
a summary of the results, we find that COH is a 
significant moderator of the relationships between 
individual-level AGG and CWB (g11 = –0.17, p < .05). 
Specifically, for every unit increase in group-level 
cohesion scores, the group-level relationships 
(i.e., β1j) are predicted to decrease by .17 units. 
This significant cross-level interaction is visually 
depicted in Figure 17.7.

summary(SAO.Model)

Linear mixed-effects model fit by REML
 Data: mlr

  AIC BIC logLik
1405.847 1440.969 –694.9234
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Random effects:
 Formula: ~1 + AGG.Group | GROUP
 Structure: General positive-definite,  

Log-Cholesky parametrization

 StdDev Corr
(Intercept) 0.3701347 (Intr)
AGG.Group 0.1209911  0.601
Residual 0.6945231

Fixed effects: CWB ~1 + AGG.Group + COH + 
AGG.Group:COH

Value Std.Error DF

(Intercept) 6.002650 0.6461452 538

AGG.Group 1.020849 0.2761603 538

COH –0.752243 0.1168581 58

AGG.Group:COH –0.165673 0.0499978 538

t-value p-value

(Intercept) 9.289939 0e+00

AGG.Group 3.696583 2e-04

COH –6.437237 0e+00

AGG.Group:COH –3.313596 1e-03

We obtain estimates of the variance components 
using the VarCorr function and compare the 
between-groups variance in slopes from the IAO 
model to the residual between-groups variance in 
slopes from the SAO model:

VarCorr(IAO.Model)

GROUP = pdLogChol(1 + AGG.Group)

Variance StdDev Corr

(Intercept) 0.14095753 0.3754431 (Intr)

AGG.Group 0.02033669 0.1426068 0.63

Residual 0.48306484 0.6950287

VarCorr(SAO.Model)

GROUP = pdLogChol(1 + AGG.Group)

Variance StdDev Corr

(Intercept) 0.13699971 0.3701347 (Intr)

AGG.Group 0.01463884 0.1209911 0.601

Residual 0.48236236 0.6945231

Specifically, we estimate a pseudo-R2 using 
Equation 17.20 and obtain a value of 0.28  
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FIGURE 17.7.  Cross-level moderating effect of group-level cohesion 
on the individual-level relationship between counterproductive 
workplace behaviors and trait aggression.
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(i.e., [0.020–0.014]/0.020 = .28), which indicates 
that by adding COH to the model, we were able to 
explain roughly 28% of the between-groups variance 
in slopes. It is possible to test whether the remaining 
variance in slopes is statistically significant by 
comparing a model that constrains the slopes to be 
fixed to a model that allows them to vary. Recall that 
the residual variance in intercepts from the IAO model 
was statistically significant. Thus, we will continue 
to model intercepts as random while testing whether 
significant variance remains in slopes:

SAO.Model.2=lme(CWB~1+AGG.Group+COH+�
AGG.Group:COH,random=~1|GROUP,data=mlr)

We then compare the fit of the original SAO model 
(random intercepts and random slopes) with the 
above model (random intercepts and fixed slope):

anova(SAO.Model.2, SAO.Model)

Model df AIC BIC logLik Test
SAO.Model.2 1 6 1422.043 1448.384
SAO.Model 2 8 1405.847 1440.969

Model df L.Ratio p-value
SAO.Model.2 –705.0212
SAO.Model –694.9234 1 vs 2 20.19572 < .0001

The results indicate that the remaining  
(i.e., residual) variance in slopes is statistically 
significant. Thus, if we had additional predictors 
of group slopes, we could attempt to predict the 
remaining variance by including those predictors  
in Equation 17.19 (and, as a main effect in  
Equation 17.17a, too).

EXPANDING THE MODEL-BUILDING/
COMPARISON APPROACH TO  
MULTILEVEL REGRESSION

A disclaimer is in order after walking the reader 
through the process of developing and comparing 
a series of models in our quest to test three 
example hypotheses. The hypotheses and models 
that we tested were extremely simple. However, 
after mastering the basics of MLR, the reader will 
be better positioned to articulate and test more 
sophisticated models. For example, consider how 

you would update the four basic models (Null, RCR, 
IAO, SAO) to test a few additional hypotheses:

■■ Hypothesis 4: Employee sex will moderate the 
strength of the relationship between employee 
aggression and counterproductive workplace 
behaviors, such that the strength of the 
relationship will be stronger for male employees 
than for female employees.

■■ Hypothesis 5: Group size will moderate the 
strength of the relationship between group 
cohesion and counterproductive workplace 
behaviors, such that the negative effect will 
become stronger as group size gets smaller.

Essentially, Hypothesis 4 is adding an additional 
Level-1 predictor of CWBs and treating it as a 
moderator variable for the Level-1 relationship, 
and Hypothesis 5 is adding an additional Level-2 
predictor of CWBs and treating it as a moderator 
variable of the Level-2 relationship. These seem like 
simple enough hypotheses, but how would one go 
about using the model-building approach to test 
these hypotheses?

We encourage you to take a few minutes to think 
through (and write down) the model equations 
and the R code that would be required to test these 
additional hypotheses. Did you come up with 
something along the lines of the following?

Null Model
Level 1: 0= β +CWB rij j ij

Level 2: 0 00 0= γ +B Uj j

The Null model doesn’t change from what was 
presented in the chapter. Thus, the Null model 
would have a single fixed effect (g00) and two 
random effects corresponding to the variance in 
CWBs that reside within (σ2) and between  
groups (τ00).

RCR Model
In contrast, the RCR model becomes appreciably 
more complex. Specifically, we have added employee 
sex to the Level-1 equation, along with the cross-
product between sex and aggression. In addition, 
for each of these additional terms, we had to decide 
whether to treat them as random or fixed (or both). 
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In our case, we elected to treat each of them as both 
fixed and random (hence the separate error terms 
for each of the Level-2 equations):

Level 1: 0 1

2

3

( )

( )
( )

( )

= β + β −

+ β

+ β − ∗ +

CWB AGG AGG

SEX

AGG AGG SEX r

ij j j ij j

j ij

j ij j ij ij

β = γ +

β = γ +

β = γ +

β = γ +

U

U

U

U

j j

j j

j j

j j

Level 2:

.

0 00 0

1 10 1

2 20 2

3 30 3

The test of Hypothesis 4 is provided by a test 
on the significance of g30. If this coefficient was 
significant, then we would likely want to estimate 
the proportion of Level-1 variance that is attributed 
to the interaction effect. This effect size would be 
computed by comparing the σ2 from the above RCR 
model to the σ2 obtained from a main effects model. 
Formally, we could estimate the effect size for the 
interaction between two Level-1 variables as

= σ − σ
σ

+ −R MainEffects MainEffects Cross

MainEffects

Level 1 pseudo- .Product2
2 2

2

To properly specify this RCR model, we need 
to know which effects to treat as fixed and which 
to treat as random. In the above equation, there 
are four fixed effects corresponding to the Level-2 
g coefficients. In addition, the above equations 
indicate that random effects are to be estimated 
for each of the predictors. Thus, there are four 
random effects corresponding to the variability in 
intercepts (τ00), the slopes for aggression (τ11), the 
slopes for sex (τ22), and the slopes for the cross-
product terms (τ33). And, there is a Level-1 random 
effect corresponding to the within-groups variance 
(σ2). Finally, the four random coefficients from the 
Level-1 equations are also allowed to covary with 
one another, resulting in six additional covariance 
terms (i.e., τ01,τ02,τ03,τ12,τ13,τ23).

Thus, moving from our original RCR model to a 
model that includes an additional Level-1 variable 
and its cross-product with our original Level-1 

variable yields a substantially more complex model. 
Adding to this complexity would be decisions 
concerning how to scale sex (e.g., dummy codes, 
effect codes, group or grand-mean centered). We do 
not delve into the various interpretations of different 
centering strategies; rather, we direct the reader 
to other sources that are specifically focused on 
scaling/centering of predictors (Hofmann & Gavin, 
1998; Raudenbush & Bryk, 2002). Whereas our 
original RCR model contained two fixed effects and 
four random effects, our revised RCR model now 
contains four fixed effects and 11 random effects. 
The R code for this revised RCR model would look 
something like:

RCR.Model = lme(CWB~1+AGG.Group+�
SEX+AGG.Group:SEX,random=~1+AGG.
Group+SEX+AGG.Group:SEX|GROUP, 
data=mlr)

IAO Model
To test Hypothesis 5, we will need to also revise the 
IAO model. Specifically, we have added group size 
to the Level-2 equation predicting intercepts, along 
with the cross-product between group size and 
cohesion:

Level 1: 0 1
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3

( )

( )
( )

( )

= β + β −

+ β

+ β − ∗ +
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j ij j ij ij

( ) ( )
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β = γ +
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The test of Hypothesis 5 is provided by a 
test on the significance of g03. If this coefficient 
were significant, we would need to estimate the 
proportion of intercept variance that is attributed 
to this interaction effect. This effect size would be 
computed by comparing the τ00 from the above IAO 
model with the τ00 obtained from a main effects 
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model. Formally, we could estimate the effect size 
for the interaction between two Level-2 variables as

= τ − τ
τ

( ) ( )

( )

+ −R MainEffects MainEffects Cross

MainEffects

Level 2 pseudo- .Product2 00 00

00

To properly specify this IAO model, we need to 
know which effects to treat as fixed and which to 
treat as random. In the above equation, there are 
seven fixed effects corresponding to the Level-2 
g coefficients. In addition, the above equations 
indicate that random effects are to be estimated for 
each of the predictors. Thus, we will continue to 
have the 11 random effects that were estimated in 
our revised RCR model.

The R code for this revised IAO model would 
look something like:

IAO.Model = lme(CWB~1+AGG.Group+SEX+�
AGG.Group:SEX+COH+SIZE+COH:SIZE, 
random=~1+AGG.Group+SEX+AGG.Group: 
SEX|GROUP, data=mlr)

Finally, in order to test our original Hypothesis 3, 
we would specify the SAO model by adding COH as 
a Level-2 predictor of slope coefficients representing 
the regression of CWBs onto aggression:

Level 1: 0 1

2

3

( )

( )
( )

( )

= β + β −

+ β

+ β − ∗ +

CWB AGG AGG

SEX

AGG AGG SEX r

ij j j ij j

j ij

j ij j ij ij

( ) ( )

( ) ( )

( )

β = γ + γ + γ

+ γ ∗ +

β = γ + γ +

β = γ +

β = γ +

COH SIZE

COH SIZE U

COH U

U

U

j j j

j j j

j j j

j j

j j

Level 2:

.

0 00 01 02

03 0

1 10 11 1

2 20 2

3 30 3

Thus, we need to estimate a final, eighth, fixed 
effect (g11). This is accomplished in R:

SAO.Model = lme(CWB~1+AGG.Group+SEX+�
AGG.Group:SEX+COH+SIZE+COH:SIZE+�
COH:AGG.Group,random=~1+AGG.Group+�
SEX+AGG.Group:SEX|GROUP,data=mlr)

MULTILEVEL (RANDOM COEFFICIENT) 
REGRESSION MODELS: CONCLUDING 
COMMENTS

Given the ubiquitous nature of nested data structures, 
we hope that our chapter provides researchers with 
an initial (albeit basic) introduction to how MLR 
models may be used to test hypotheses using data 
conforming to a nested or multilevel structure.  
Table 17.2 provides a brief summary of our model-
building/comparison approach using MLR. In 
addition to our basic introduction (and the other 
helpful chapters in this handbook), we encourage 
readers to explore issues including (a) implications 
for the scaling and centering of data (e.g., Hofmann & 
Gavin, 1998; Raudenbush & Bryk, 2002 [especially 
Chapters 2 and 5]; Zhang, Zyphur, & Preacher, 2009), 
(b) extensions of the MLR model to longitudinal 
applications (i.e., temporal nesting of repeated Level-1 
observations within Level-2 units; Bliese & Ployhart, 
2002; Bryk & Raudenbush, 1987; Raudenbush & 
Bryk, 2002), (c) strategies for testing hypotheses 
involving multilevel mediation (see Chapter 20; 
also Bauer, Preacher, & Gil, 2006; Preacher, Zyphur, 
& Zhang, 2010; Zhang et al., 2009), (d) issues 
associated with the analysis of dyadic data (i.e., 
individuals nested in couples or pairs; see Chapter 
18; also Atkins, 2005; Kenny, Kashy, & Cook, 2006; 
Krasikova & LeBreton, 2012; Lyons & Sayer, 2005), 
and (e) how to avoid fallacies of inference when 
interpreting the results from a multilevel analysis 
(Firebaugh, 1978; Greenland, 2002; James, 1982; 
Mossholder & Bedeian, 1983; Ostroff, 1993).

Finally, just like the traditional, single-level OLS 
regression model carries with it certain underlying 
assumptions, so too does the more complicated 
MLR model (Hox, 2010; Raudenbush & Bryk, 2002; 
Snijders & Bosker, 2012). One’s data and theory 
should be closely examined to determine whether 
these assumptions are likely met or violated:

■■ The Level-1 residuals (rij) have a mean of zero, 
are normally and independently distributed, and 
have a constant (homoscedastic) variance (σ2).

■■ The Level-1 residuals are uncorrelated with the 
Level-1 predictors.

■■ The Level-1 residuals are uncorrelated with the 
Level-2 residuals (U0j, U1j, etc.).
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TABLE 17.2

Multilevel Regression: A Model Comparison Approach

Model Specific steps Associated equations What to look for

1. Null A. Estimate Null model 
with fixed and random 
intercepts

Level 1: CWBij = β0j + rij

Level 2: β0j = g00 + U0j

B. Estimate variance 
components

τ00: variance in Level-1 outcome variable that 
resides between Level-2 units.

σ2: variance in Level-1 outcome variable that 
resides within Level-2 units.

C. Compute and interpret 
ICC(1)

1 00

00
2

ICC )( =
τ

τ + σ
Interpreted as the proportion of variance in 

Level-1 outcome variable that is attributed to 
the nesting of Level-1 units in Level-2 units.

D. Estimate alternative 
model with fixed 
intercept

Level 1: CWBij = β0j + rij

Level 2: β0j = g00

E. Test for significant 
variance in intercepts by 
comparing fit of the Null 
model (Step A) and the 
alternative model (Step D)

If the less restrictive model (Step A) is better 
fitting, then there is significant variance in 
Level-1 outcome scores across Level-2 units.

2. RCR A. Add Level-1 predictor 
variables and estimate 
the RCR model with fixed 
and random intercepts 
and slopes

Level 1: CWBij = β0j + β1j(AGGij – AGG
___

j) + rij

Level 2: β0j = g00 + U0j

	 β1j = g10 + U1j

B. Estimate variance 
components for RCR

τ00: variance in intercepts
τ11: variance in slopes
τ01: covariance between intercepts and slopes
σ2: residual variance in Level-1 outcome  

(variable that exists after including Level-1 
predictor variables in the model)

C. Compute and interpret 
ICCβ

ICCβ (See Aguinis & Culpepper, 2015, for 
equations or use the iccbeta package in R 
to estimate this intraclass correlation.)

Interpreted as the proportion of variance in 
Level-1 outcome variable that is attributed 
to group slope differences. This statistic 
is especially important if researchers have 
hypotheses about cross-level interactions/
moderators.

D. Interpret fixed 
coefficients

g00: pooled or average intercept
g10: pooled or average slope (effect of Level-1 

predictor on Level-1 outcome)

E. Compute and interpret 
pseudo-R2 pseudo- 2

2 2

2
R Null RCR

Null

=
σ − σ

σ
Interpreted as the proportion of Level-1 outcome 

variance that may be explained using the 
Level-1 predictor variable.

F. Estimate alternative 
model with fixed 
intercept and fixed slope

Level 1: CWBij = β0j + β1j(AGGij – AGG
___

j) + rij

Level 2: β0j = g00

	 β1j = g10

G. Estimate alternative 
model with random 
intercept and fixed slope.

Level 1: CWBij = β0j + β1j (AGGij– AGG
___

j) + rij

Level 2: β0j = g00 + U0j

	 β1j = g10
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H. Test for significant 
variance in intercepts by 
comparing fit of models 
from Steps F and G.

If the model from Step G is a better-fitting 
model than the one from Step F, then there is 
significant variance in intercepts. Note: this 
result is typically consistent with the results 
of Step E from the previous Null model testing 
sequence.

I. Test for significant 
variance in slopes by 
comparing fit of models 
from Steps A and F.

If the model from Step A is a better-fitting model 
the one from Step G, then there is significant 
variance in slopes.

3. IAO A. Add Level-2 predictors of 
intercepts and estimate 
IAO model with fixed and 
random intercepts and 
slopes.

Level 1: CWBij = β0j + β1j(AGGij – AGG
___

j) + rij

Level 2: β0j = g00 + g01 (COHj) + U0j

	 β1j = g10 + U1j

B. Estimate variance 
components for IAO

τ00: residual variance in intercepts that exists 
after including Level-2 predictor variable in 
the model

τ11: variance in slopes
τ01: covariance between intercepts and slopes
σ2: residual variance in Level-1 outcome variable 

that exists after including Level-1 predictor 
variables in the model.

C. Interpret fixed 
coefficients

g00; g10; g01 g00: fixed (pooled) intercept
g10: fixed (pooled) slope (relationship between 

Level-1 predictor variable and Level-1 outcome 
variable)

g01: fixed slope (relationship between Level-2 
predictor variable on the Level-1 outcome 
variable)

D. Compute and interpret 
pseudo-R2

pseudo- 2 00 00

00
R RCR IAO

RCR
=

τ − τ
τ

) )

)

( (

(

Interpreted as the proportion of intercept variance 
that may be explained using the Level-2 
predictor variable.

E. Estimate alternative 
model with fixed 
intercept and fixed slope.

Level 1: CWBij = β0j + β1j (AGGij – AGG
___

j) + rij

Level 2: β0j = g00 + g01 (COHj)
	 β1j = g10

F. Estimate alternative 
model with random 
intercept and fixed slope.

Level 1: CWBij = β0j + β1j (AGGij – AGG
___

j) + rij

Level 2: β0j = g00 + g01 (COHj) + U0j

	 β1j = g10

G. Test for significant 
residual variance in 
intercepts by comparing 
fit of models from  
Steps E and F.

If the model from Step E is the better-fitting 
model, that suggests the Level-2 predictor 
has explained all of the meaningful variance 
in intercepts. If the model from Step F is the 
better-fitting model, which suggests there is 
still significant variance in intercepts (could 
add additional Level-2 predictors to try and 
explain this variance).

TABLE 17.2

Multilevel Regression: A Model Comparison Approach (Continued)

Model Specific steps Associated equations What to look for

(continues)
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H. Test for significant 
variance in slopes by 
comparing fit of models 
from Steps A and F.

If the model from Step A is the better-fitting 
model, that suggests there is significant 
variance in slopes, and it makes sense to 
proceed with tests of potential cross-level 
moderators.

4. SAO A. Add level-2 predictors of 
slopes and estimate SAO 
model with fixed and 
random intercepts and 
slopes.

Level 1: CWBij = β0j + β1j (AGGij – AGG
___

j) + rij

Level 2: β0j = g00 + g01 (COHj) + U0j

	 β1j = g10 + g11 (COHj) + U1j

B. Estimate variance 
components for SAO

τ00: residual variance in intercepts that exists after 
including Level-2 predictor variable in the model

τ11: residual variance in slopes that exists after 
including Level-2 predictor variable in the model

τ01: covariance between intercepts and slopes
σ2: residual variance in Level-1 outcome variable 

that exists after including Level-1 predictor 
variables in the model.

C. Interpret fixed 
coefficients

g00: fixed (pooled) intercept
g10: fixed (pooled) slope (relationship between 

Level-1 predictor variable and Level-1 outcome 
variable)

g01: fixed slope (relationship between Level-2 
predictor variable on the Level-1 outcome 
variable)

g11: fixed slope (relationship between the Level-2 
predictor variable and the relationship between 
the Level-1 predictor and outcome variables)

D. Compute and interpret 
pseudo-R2

pseudo- 2 11 11

11
R IAO SAO

IAO
=

τ − τ
τ

) )

)

( (

(

Interpreted as the proportion of slope variance 
that may be explained using the Level-2 
predictor variable.

E. Estimate alternative 
model with fixed slope.

Level 1: CWBij = β0j + β1j (AGGij – AGG
___

j) + rij

Level 2: β0j = g00 + g01 (COHj) + U0j

	 β1j = g10 + g11 (COHj)

F. Test for significant 
residual variance in 
slopes by comparing  
fit of models from  
Steps A and E.

If the model from Step E is the better-fitting 
model, which suggests the Level-2 predictor 
has explained all of the meaningful variance 
in slopes. If the model from Step A is the 
better-fitting model, that suggests there is still 
significant variance in slopes.

G. Test for significant 
variance in slopes by 
comparing fit of models 
from Steps A and F.

If the model from Step A is the better fitting 
model, then that suggests there is significant 
variance in slopes and it makes sense to 
proceed with test of potential cross-level 
moderators.

H. Graph cross-level 
moderators

Note. AGG = aggression; COH = cohesiveness; CWB = counterproductive workplace behaviors; IAO = Intercepts-as-Outcomes;  
ICC = intraclass correlation; RCR = random coefficients regression; SAO = Slopes-as-Outcomes.

TABLE 17.2

Multilevel Regression: A Model Comparison Approach (Continued)

Model Specific steps Associated equations What to look for
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■■ The Level-2 residuals each have a mean of zero, 
follow a multivariate normal distribution, and are 
independent among Level-2 groups.

■■ The Level-2 residuals are uncorrelated with the 
Level-2 predictors.

APPENDIX 17.1: ANNOTATED R CODE

# Code corresponding to:
# Shiverdecker, L. K., & LeBreton, J. M. (2018). 

Multilevel (random coefficient) regression 
modeling.

# In S. E. Humphrey & J. M. LeBreton 
(Eds.), Handbook of multilevel theory, 
measurement, and

# analysis (Chapter 17). Washington, DC: 
American Psychological Association.

# Step 1: Read in Data File for Multilevel 
Regression Examples (mlr.csv)

mlr <- read.csv(“mlr.csv”, header=T, sep=”,”)

# Step 2: Install packages and load into working 
library of tools

install.packages(“multilevel”); library(multilevel)
install.packages(“ggplot2”); library(ggplot2)
install.packages(“data.table”); library(data.table)
install.packages(“plyr”); library(plyr)

# Step 3: Create function to plot figures 1:4
ggplotRegression <- function (fit) {
require(ggplot2)
ggplot(fit$model, aes_string(x = 

names(fit$model)[2], y = names(fit$model)
[1])) + geom_point() + xlim(0,15) + 
ylim(1,7)+

stat_smooth(method = “lm”, se=FALSE, col = 
“red”, fullrange=T) +

labs(title = paste(“R-Square = 
“,signif(summary(fit)$r.squared, 5),
“Intercept =”,signif(fit$coef[[1]],5),
“Slope =”,signif(fit$coef[[2]], 5),
“P =”,signif(summary(fit)$coef[2,4], 5)))+

labs(x=”Trait Aggression”, y=”Counterproductive 
Workplace Behaviors”) }

#Step 4: Plot Figures
###Create Subsets of Data Used in Figures 1–4 

(note: mlr dataframe was already sorted by 
GROUP variable)

group1 <- lm(CWB~AGG,data=mlr[01:10,])
group2 <- lm(CWB~AGG,data=mlr[11:20,])
group3 <- lm(CWB~AGG,data=mlr[21:30,])
group4 <- lm(CWB~AGG,data=mlr[31:40,])
group1234 = lm(CWB~AGG,data=mlr[01:40,])

###Generate Figures 1–4
ggplotRegression(group1)
ggplotRegression(group2)
ggplotRegression(group3)
ggplotRegression(group4)
ggplotRegression(group1234)

###Generate Figure 5
all.groups=ggplot(mlr,aes(x=AGG,y=CWB,grou

p=GROUP))+ xlim(0,15) + ylim(1,7)+stat_
smooth(method = “lm”, se=FALSE, 
fullrange=T) + labs(x=“Trait Aggression”, 
y=“Counterproductive Workplace 
Behaviors”)

all.groups

###Figure 6
groups12=ggplot(mlr[1:20,],aes(y = CWB, x 

= AGG)) + geom_point(size = 3, alpha 
= .8) + geom_smooth(method=“lm”, 
fullrange=T, se= F, size = 1, aes(linetype 
= as.factor(GROUP), group = GROUP)) 
+ geom_smooth(method = “lm”,size = 
3, colour = ‘black’, se = F, fullrange=T) 
+ xlim(0,15) + ylim(1,7)+ labs(x=“Trait 
Aggression”, y=“Counterproductive 
Workplace Behaviors”, linetype=“Group #”)+ 
geom_label(aes(label =GROUP),color=‘blue’)

groups12

#Step 5: Generate the Coefficients in Table 1
set.seed(1)
dat <- data.table(x=mlr$AGG, y=mlr$CWB, 

grp=mlr$GROUP)
OLS = dat[,list(intercept=coef(lm

(y~x))[1], coef=coef(lm(y~x))
[2],rsq=summary(lm(y~x))$r.squared)
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,by=grp]
OLS
min(OLS[,2]); max(OLS[,2])
min(OLS[,3]); max(OLS[,3])
min(OLS[,4]); max(OLS[,4])

# Step 6: Multilevel Regression Models
###Null Model(One-Way Random Effects 

ANOVA)
# CWB~1, Regressing CWB onto a fixed 

intercept
# random=~1 Regressing CWB onto random 

intercepts
# |GROUP, Identifies the level 2 variable named 

as “group”
# data=mlr Identifies the data set where “CWB” 

and “group” are located
Null.Model = lme(CWB~1, random=~1|GROUP, 

data=mlr)
summary(Null.Model)

#Estimating the ICCs from the Null Model
VarCorr(Null.Model)
Null.ICC=GmeanRel(Null.Model)
names(Null.ICC) #returns the names of the 

variables in the object “Null.ICC”
Null.ICC$ICC #returns the value of the ICC 

variable in the Null.ICC object which is the 
ICC(1)

Null.ICC$MeanRel #returns the 60 ICC(2) 
values corresponding to each group  
intercept

#Note: values identical b/c all groups are the 
exact same size . . . so sigma^2/nj is the same 
for all groups.

mean(Null.ICC$MeanRel) #estimates the mean 
across the groups which is the ICC(2) or 
ICC(k) [where k = 60]

Null.Model.2=gls(CWB~1, data=mlr) 
#Estimating Null Model with Fixed 
Intercepts

logLik(Null.Model.2)*–2 #Manually estimating 
–2*loglikelihood of Null Models

logLik(Null.Model)*–2
–2*(–805.1175)—2*(–750.5154) #Manually 

estimating the difference in likelihood ratios

anova(Null.Model, Null.Model.2) #Manually 
comparing fixed vs. fixed + random 
intercepts

summary(Null.Model) #Displaying summary of 
Null.Model

VarCorr(Null.Model) #Displaying the variance/
covariance matrix

### Grand Mean Center the Level 1 Predictor 
(NOTE: Not used in this chapter; included 
only for illustrative purposes)

mean(mlr$AGG)
mlr$AGG.Grand=mlr$AGG-4.035167
# Aggregate employee-level trait aggression 

scores to the group level
AGG.Aggregated=aggregate(mlr[,c(2)], 

list(mlr$GROUP), mean, na.rm=T)
names(AGG.Aggregated)
AGG.Aggregated=rename(AGG.Aggregated, 

replace=c(“Group.1”=“GROUP”,  
“x”=“AGG.GroupMean”)) #renames  
specific variables

names(AGG.Aggregated)
mlr=merge(mlr,AGG.Aggregated,by=“GROUP”)
names(mlr)

### Group Mean Center the Level 1 Predictor
mlr$AGG.Group=mlr$AGG-mlr$AGG.

GroupMean
names(mlr)

#Random Coefficient Regression Model
# CWB~1+AGG.group regressing CWB onto 

fixed effect for intercept
# random=~1+AGG.group regressing CWB onto 

random intercepts and slopes (AGG.group)
# |GROUP, identifying the level 2 (grouping) 

variable
# data=mlr name of data file

RCR.Model=lme(CWB~1+AGG.Group, 
random=~1+AGG.Group|GROUP,data=mlr)

summary(RCR.Model)
VarCorr(Null.Model) #displays variance/

covariance of parameters from ANOVA
VarCorr(RCR.Model) #displays variance/

covariance of parameters from RCR
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#Estimating the ICC_beta from the RCR Model
###NOTE: As of August 9, 2017 the icc_beta 

package was not available for version 3.4.0 
of R

#Use gls to estimate model with fixed intercept 
and fixed slope

RCR.Model.2=gls(CWB~1+AGG.
Group,data=mlr)

#Use lme to estimate a model with random 
intercept and fixed slope

RCR.Model.3=lme(CWB~1+AGG.Group, 
random=~1|GROUP,data=mlr)

#Test if RCR.Model.3 is a better fit to the data 
than RCR.Model.2

anova(RCR.Model.2,RCR.Model.3)

#Test if RCR.Model (Random Intercepts & 
Slopes) is a better fit to the data than RCR.
Model.3

anova(RCR.Model.3,RCR.Model)

#Intercepts-as-Outcomes Model
#Adding Cohesion as a level 2 predictor
IAO.Model=lme(CWB~1+AGG.

Group+COH,random=~1+AGG.
Group|GROUP,data=mlr)

summary(IAO.Model)
VarCorr(RCR.Model)
VarCorr(IAO.Model)

#Use gls to estimate model with fixed intercept 
and fixed slopes

IAO.Model.2=gls(CWB~1+AGG.
Group+COH,data=mlr)

#Use lme to estimate a model with random 
intercept and fixed slopes

IAO.Model.3=lme(CWB~1+AGG.Group+COH, 
random=~1|GROUP,data=mlr)

#Test if IAO.Model.2 (Fixed Intercept & Slopes) 
is a better fit than IAO.Model.3 (Random 
Intercepts & Fixed Slopes)

anova(IAO.Model.2,IAO.Model.3)

#Test if IAO.Model3 (Random Intercepts & 
Fixed Slopes) is a better fit original IAO.
Model (Random Intercepts & Slopes)

anova(IAO.Model.3,IAO.Model)

#Slopes-as-Outcomes Model
#Testing the cross-level moderating effect of L2 

cohesion on the relationship
###between L1 CWBs and L1 group-mean 

centered aggression scores
#Cross-Product Effect is denoted using “:”
#helping~1+AGG.Group+COH + AGG.

Group:COH, Fixed coef. for intercept, 
aggression, cohesion, cross-product

#random=~1+AGG.Group Random coefficients 
for intercept and aggression

#|GROUP Name of level 2 grouping variable 
“GROUP”

#data=mlr Data containing variables in SAO

SAO.Model=lme(CWB~1+AGG.
Group+COH+AGG.
Group:COH,random=~1+AGG.
Group|GROUP,data=mlr)

summary(SAO.Model)

#Request variance components to estimate 
quasi-R2 for slope variance

VarCorr(IAO.Model)
VarCorr(SAO.Model)
SAO.Rsq=(0.02033669–0.01463884)/ 

0.02033669
SAO.Rsq

#Test whether the remaining variance in slopes is 
significant

SAO.Model.2=lme(CWB~1+AGG.
Group+COH+AGG.Group:COH,random=	
~1|GROUP,data=mlr)

anova(SAO.Model.2, SAO.Model)

# Step 7: Plotting the Cross-Level Interaction 
(Figure 7)

#Descriptive statistics for cross-level moderator
mean(mlr$COH)
sd(mlr$COH)
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#manual estimation of moderator values at +1 
and –1 sd

5.508833 – 0.4758722; 5.508833 + 0.4758722

mean(mlr$AGG.Group) #estimating mean of 
trait aggression

sd(mlr$AGG.Group) # obtaining sd of trait 
aggression

#creating a new data frame with high-low  
values for (AGG.Group (M; +1SD), 
COH(-1SD; +1SD))

inter.data=data.frame(AGG.
Group=c(0.0000,0.0000, 1.835865, 
1.835865),

COH=c(5.032961,5.984705,5.032961,5.984705))
inter.data #displaying the data frame

#adding a new variable called “predicted” to 
this new data frame using the ‘predict’ 
function

inter.data$predicted=predict(SAO.Model,inter.
data,level=0)

inter.data #confirming new variable added to 
data frame

#plotting the cross-level interaction (Option 1: 
Use the ‘interaction.plot’ function)

interaction.plot(inter.data$AGG.Group,inter.
data$COH,inter.data$predicted)

interaction.plot(inter.data$AGG.Group,inter.
data$COH,inter.data$predicted, 
ylab=”Counterproductive Work Behaviors”, 
xlab=”Aggression (Group-Mean Centered)”, 
trace.label=”Cohesion”)

###cleaning up the plot
inter.data$AGG.Group2=c(“0 (Mean)”,”0 

(Mean)”,“1.85 (+1SD)”,“1.85 (+1SD)”)
inter.data$COH2=c(“-1SD”,“+1SD”, 

“-1SD”,“+1SD”)
inter.data
interaction.plot(inter.data$AGG.Group2,inter.

data$COH2,inter.data$predicted, 
ylab=“Counterproductive Work Behaviors”, 
xlab=“Aggression (Group-Mean Centered)”, 
trace.label=“Cohesion”)

#plotting the cross-level interaction (Option 2: 
Use the ‘ggplot’ function)

ggplot(inter.data,aes(x=AGG.Group2, 
y=predicted,group=COH2)) +

geom_line(aes(linetype=factor(COH2)))+ # 
Graph separate lines for high and low levels 
of cohesion

labs(title=”Cross-Level Moderating Effect 
of Cohesion”, x=”Trait Aggression 
(Group-Mean Centered)”, y=”Predicted 
Counterproductive Work Behaviors”)+

scale_linetype_discrete(name=”Cohesion”)+
ylim(1,7)

#Step 8: Concluding Examples
####SEX as level-1 moderator of cwb-agg
####SIZE as level-2 moderator of cwb-coh

#Specification of Null Model
Null.Model = lme(CWB~1, random=~1|GROUP, 

data=mlr)

#Specification of RCR
RCR.Model = lme(CWB~1+AGG.

Group+SEX+AGG.Group:SEX,
random=~1+AGG.Group+SEX+AGG.

Group:SEX|GROUP, data=mlr)

#Specification of IAO
IAO.Model = lme(CWB~1+AGG.

Group+SEX+AGG.
Group:SEX+COH+SIZE+COH:SIZE, 
random=~1+AGG.Group+SEX+AGG.
Group:SEX|GROUP, data=mlr)

#Specification of SAO
SAO.Model = lme(CWB~1+AGG.

Group+SEX+AGG.Group:SEX+COH
+SIZE+COH:SIZE+COH:AGG.Group, 
random=~1+AGG.Group+SEX+AGG.
Group:SEX|GROUP, data=mlr)
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