WHY RATINGS ON QUESTIONNAIRE MEASURES SHOULD NOT SERVE AS INDEPENDENT VARIABLES

(UNLESS YOU CORRECT FOR ENDOGENEITY)

John Antonakis Faculty of Business and Economics University of Lausanne

16 February 2024

Let's begin with an example: The data are from Fischer, Dietz, and Antonakis (2024). The below is not reported in the paper (and we demonstrated another point); here I show why it is folly to use questionnaire ratings, which are endogenous, to predict anything. We have an experimental design, where:

- 1. We reproduce the "script" where we predict y from x as usually done in observational studies
- 2. But, we control the information environment perfectly
- 3. The outcome, y, is costly; yet x is not exogenous
- 4. We show causal illusions when we use x, from ratings, to predict y.

We proceed as follow:

• We use ratings of leadership at T1 to predict an objective outcome in T2 (typical in management journals). We emulate this situation experimentally.

• Randomize participants (*n* = 409) to watch a video about a leader motivating workers in a mail sorting task to raise money for a charity

• We manipulate charisma (Antonakis, d'Adda, Weber, & Zehnder, 2022), and performance cues (Lord, Binning, Rush, & Thomas, 1978).

- Participants rate leader on various "styles" here, the TLI; the "vision"
 component (Podsakoff, MacKenzie, Moorman, & Fetter, 1990)—this
 measure closely models what charisma ratings should capture as outcomes
 (Banks et al., 2017).
- Participants are paid out, but also receive a bonus which they can keep or donate (for real) to a charity.

We have *full control* over the environment, and what causes the endogenous rating (i.e., the questionnaire measure).

Yet, in practice what do researchers do? They measure x, at time 1, then measure y later. They may even have an objective metric in y (i.e., sales, or a costly outcome); so time and method or source is separated. Yet, they (and reviewers and editors) consistent fall into the *post-hoc ergo propter hoc* fallacy.

Suppose x1 is LMX. Let's think though some causes of it? The only time b_1 will give you a true estimate of the effect on y is if either j_1 , g_1 , or b_2 are zero; these are rather heroic assumptions to make if x is endogenous.

What is endogenous and exogenous really mean?

- Exogenous (x): varies randomly in nature, is fixed, or is manipulated; is not determined by variables in, or omitted from, the model; does not correlate with the error term, thus the coefficient is consistently estimated.
- Endogenous (z); determined by variables in or omitted from the model

If a shock in *e* also affects the predictor, then the predictor is endogenous.

What is the problem of using ratings of styles? They are not exogenous!

- The rating of the style is endogenous
- Omitted causes could drive the rating and whether subject donates, and for other reasons, including evaluative judgments due to how questionnaire measures are constructed.
- What are some of these possible omitted causes? Think about this in realworld data; why not use the perceptual rating to predict the outcome?

Yet, many studies in OB use perceptual ratings (from questionnaires) to predict an outcome.

Let's use the endogenous rating (called charisma_rating here) and a LPM. And,

voilà; nice and significant results! The rating predicts the donation! YAY!

. reg donation charisma_rating panas_pos- openness, vce(robust)

Linear regression

Number of obs	=	409
F(8, 400)	=	2.58
Prob > F	=	0.0094
R-squared	=	0.0433
Root MSE	=	.47982

 donation	Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
charisma_rating	.0788035	.0214677	3.67	0.000	.0365998	.1210071
panas_pos	.0082289	.0369836	0.22	0.824	0644775	.0809354
panas_neg	0154792	.0469749	-0.33	0.742	1078276	.0768693
extrav	0085972	.0230565	-0.37	0.709	0539243	.0367299
agreeab	.0291385	.0256619	1.14	0.257	0213106	.0795875
conscient	.0415081	.0344327	1.21	0.229	0261836	.1091998
neurot	.0303796	.0268175	1.13	0.258	0223413	.0831005
openness	0310837	.0258881	-1.20	0.231	0819775	.01981
cons	1183937	.2240456	-0.53	0.597	5588477	.3220603

Does it really?

It seems so; the marginal effect of charisma

Wow! A change from a -1 to +1 SD in charisma changes probability of donating by +57.20% (from .29 to 46).

Yet, the average marginal effects of the manipulations show nothing! If the behavioral manipulation shows nothing how can the rating of the behavior show something?

reg donation manip_charisma manip_cue panas_pos- openness, vce(robust)							
Linear regressio	on			Number of (F(9, 399) Prob > F R-squared Root MSE	obs = = = = =	409 0.88 0.5430 0.0173 .4869	
donation	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]	
manip_charisma		.0486637	1.02		0460503		
manip_cue	.0046598	.0486152	0.10	0.924	0909142	.1002339	
panas_pos	.0288227	.0367977	0.78	0.434	043519	.1011644	
panas_neg	0162122	.0465792	-0.35	0.728	1077836	.0753592	
extrav	0103089	.0237724	-0.43	0.665	0570436	.0364259	
agreeab	.0301093	.0266212	1.13	0.259	022226	.0824447	
conscient	.0429167	.0349081	1.23	0.220	02571	.1115435	
neurot	.0323433	.027287	1.19	0.237	021301	.0859875	
openness	0261269	.0262516	-1.00	0.320	0777356	.0254818	
_cons	.0503764	.2257777	0.22	0.824	3934861	.4942389	

Now, the donation model correctly done: Instrumental-variable regression:

In the above case, suppose the instrument/manipulation did cause y. Then \hat{m} captures the causal effect of x on y. The IV formula is: cov(x,y)/cov(m,x). With the real data we have, however, x does not overlap with y, hence the null result.

ivreg2 donation (charisma_rating = i.manip_charisma##i.manip_cue) panas_pos- openness, robust endog(charisma_rating)

IV (2SLS) estimation

Estimates efficient for homoskedasticity only Statistics robust to heteroskedasticity

Total (uncentered) SS =	5.2591687 155 .05468512		F(Prob Cent Unce	er of obs = 8, 400) = > F = ered R2 = ntered R2 = MSE =	409 0.87 0.5404 0.0229 0.3932 .4795
donation Coefficient	Robust std. err.	Z	P> z	[95% conf.	interval]
charisma rating .0122155	.037661	0.32	0.746	0615987	.0860298
panas pos .0260532	.0377748	0.69	0.490	047984	.1000904
panas neg 016802	.0459514	-0.37	0.715	106865	.0732611
extrav 0088497	.0233044	-0.38	0.704	0545255	.0368261
agreeab .0290263	.0260708	1.11	0.266	0220714	.0801241
conscient .0400632	.0342514	1.17	0.242	0270683	.1071948
neurot .0322454	.0268252	1.20	0.229	0203311	.0848219
openness 0263917	.0261269	-1.01	0.312	0775996	.0248161
_cons .0543241	.2387671	0.23	0.820	4136509	.522299
Underidentification test (Kle	lbergen-Paap	rk LM st		: 3) P-val =	

Diagnostics for instrumental variable regression are good.

```
Weak identification test (Cragg-Donald Wald F statistic):
                                                         75.346
                    (Kleibergen-Paap rk Wald F statistic): 83.733
Stock-Yogo weak ID test critical values: 5% maximal IV relative bias 13.91
                                 10% maximal IV relative bias
                                                          9.08
                                 20% maximal IV relative bias 6.46
                                 30% maximal IV relative bias 5.39
                                                    22.30
12.83
                                 10% maximal IV size
                                 15% maximal IV size
                                                   9.54
                                 20% maximal IV size
                                 25% maximal IV size
                                                           7.80
Source: Stock-Yogo (2005). Reproduced by permission.
NB: Critical values are for Cragg-Donald F statistic and i.i.d. errors.
_____
Hansen J statistic (overidentification test of all instruments): 1.462
                                         Chi-sq(2) P-val = 0.4815
-endog- option:
Endogeneity test of endogenous regressors:
                                                          5.098
                                         Chi-sq(1) P-val = 0.0240
Regressors tested: charisma rating
____
Instrumented: charisma rating
Included instruments: panas pos panas neg extrav agreeab conscient neurot
                 openness
Excluded instruments: 1.manip charisma 1.manip cue 1.manip charisma#1.manip cue
```

See Bastardoz et al. (2023).

Another way to understand the problem (Fischer et al., 2024).

- Regress charisma ratings on the manipulations and controls; save the residuals.
- What to the residuals capture? All idiosyncratic causes of the charisma rating not due to the manipulations and controls
- If the residuals predict the donation, then we know it was the idiosyncratic variation provided by the rater that correlates with y. Is that a problem?
 Yes! Because it is not the behavior that is being rated!
- Where is "behavior" in organizational behavior? (Banks, Woznyj, & Mansfield, 2021). See also Fischer (2023)—a great piece.

Assume: LBM = Leadership behavior Measure; Lead = leadership style measure Idio = Idiosyncratic variation

Case 1: LBM is a cause of y and of *lead*

Note:

Residual (from regressing *lead* on *LBM*)

Overlap of Idiosyncratic Variation with Rated Behavior

• Variation in y due to Idiosyncratic variation

Variation in y due to LBM

Variation in lead due to LBM

+O – Information used to estimate the relation between residual of rated leader behavior and y

F A Information used by instrumental-variable estimator

Measurement error

Case 2: LBM is neither a cause of y nor of *lead* (what I just showed you with our data)

Note:

Residual (from regressing *lead* on *LBM*)

Overlap of Idiosyncratic Variation with Rated Behavior

• Variation in y due to Idiosyncratic variation

▲ Variation in y due to LBM*

▼ Variation in lead due to LBM*

+O-• Information used to estimate the relation between residual of rated leader behavior and y

√▲ Information used by instrumentalvariable estimator*

Measurement error

*Absent

Case 3: LBM is a cause of y and not of *lead*

Note:

Residual (from regressing lead on LBM)

Overlap of Idiosyncratic Variation with Rated Behavior

• Variation in y due to Idiosyncratic variation

Variation in y due to LBM

Variation in lead due to LBM*

+O – Information used to estimate the relation between residual of rated leader behavior and y

↓ Information used by instrumentalvariable estimator*

Measurement error

*Absent

Case 4: LBM is a cause of lead but not y

Note:

Residual (from regressing *lead* on *LBM*)

Overlap of Idiosyncratic Variation with Rated Behavior

• Variation in y due to Idiosyncratic variation

▲ Variation in y due to LBM*

Variation in lead due to LBM

+O – Information used to estimate the relation between residual of rated leader behavior and y

√▲ Information used by instrumentalvariable estimator*

Measurement error

*Absent

Let's use this insight to do an example with Case 1: Where the manipulation is a cause of the leader rating and y. Data is from S2, Meslec, Curseu, Fodor, and Kenda (2020). We manipulate:

- 1. Charisma (leader manipulation)
- 2. Incentives (money manipulation)
- 3. We measure a costly outcome.

And also elicit measures charisma. Do these measures measure behavior?

The reduced form effect:

Source	SS	df	MS	- F(2,	er of obs	=	274 94.53
Model Residual + Total	492884.567 706474.484 1199359.05	2 271 273	246442.28 2606.9169 4393.256	4 Prob 1 R-squ - Adj B	Prob > F R-squared Adj R-squared Root MSE		0.0000 0.4110 0.4066 51.058
performance	Coefficient	Std. err.	 t	P> t	[95% coi	nf.	interval]
leader money _cons	54.56704 64.22236 132.8715	6.172284 6.171132 5.229363	8.84 10.41 25.41	0.000 0.000 0.000	42.41532 52.0729 122.5763	9	66.71876 76.37181 143.1668

. reg performance leader money

So we know that the leader (charisma) manipulation has a cause effect.

Compared to the control treatment, the leader treatment induces 54.57 higher performance.

Now, let's regress the leader rating on performance (and control for the money manipulation):

Source	SS	df	MS	Number of obs F(2, 271)	=	274 45.36
Model Residual + Total	300798.824 898560.228 1199359.05	271	50399.412 3315.7204 4393.2566	Prob > F R-squared Adj R-squared Root MSE	= = =	0.0000 0.2508 0.2453 57.582
=	e Coefficient	Std. err	. t	P> t [95%	conf.	interval]
charisma_ratin mone _con	g 8.542106 y 64.87133	4.554463 6.959277 12.36463	9.32		4521 7021 3241	17.50873 78.57245 162.01

. reg performance charisma_rating money

Whoops. The effect should be 54.57!

We redo with IV-regression!

reg3 (perf = charisma_rating money) (charisma_rating = i.leader i.leader#i.money i.money) , 2sls

Two-stage least-squares regression

Equation	Obs Pa	rams	RMSE	"R-squared"	F	P>F
performance charisma_r~g	274 274	2 1 3	L01.9751 .733478	-1.3497 0.0913	23.69 9.05	0.0000
	Coefficient	Std. er	r. t	P> t	[95% conf.	interval
performance charisma_rating money						170.570
_cons						-3.84774
charisma_rating 1.leader		.1240944	a 3.73	3 0.000	.2195749	.707106
leader#money 1 1		.1773765	5 -0.02	2 0.985	3517005	.345163
1.money _cons		.123617 .0858471		7 0.946 9 0.000	2344492 2.105338	.251209 2.44260
Endogenous: perfe Exogenous: mone	matrix of re	siduals. sma_rating leader 0.1	g Leader#0.n	noney 0.lead	er#1.money	a

And the non-linear combination of estimators, the "indirect effect" gives the correct response!

. nlcom _b[charisma_rating :1.leader]* _b[performance: charisma_rating]							
_nl_1: _b[charisma_rating :1.leader]* _b[performance: charisma_rating]							
Coefficient	Std. err.	Z	P> z	[95% conf.	interval]		
nl_1 54.73269	19.18077	2.85	0.004	17.13907	92.32631		

Let's examine Meslec et al. using the residualization procedure from Fischer et al., (2024). Remember the reduced form showed an effect

. reg charisma	_rating i.lea	der 1.mone	Y			
Source	SS	df	MS	Number of		274
Model Residual	14.6012032 145.257481	2 271	7.3006016			0.0000
Total	159.858684	273	.585562945	2 1	=	
 charisma_r~g	Coefficient	Std. err.	 t	P> t [9	5% conf.	interval]
1.leader 1.money cons	.4617405 .0067923 2.274738	.0885048 .0884883 .0749842	0.08	0.9391	874961 674196 127113	.6359849 .1810042 2.422364

. predict charisma_resid, resi

rog chariana rating i loador i monou

As we see below, in this case, the residuals show nothing! There is no idiosyncratic variance (though remember the OLS estimate on p. 21 gave a wrong estimate)—we just cannot trust estimators using only observed ratings:

	SS	df	MS	Number of o F(3, 270)	bs = =	274 62.98
Model Residual	493770.237 705588.814	3 270	164590.079 2613.2919	Prob > F R-squared	=	0.0000 0.4117
+ Total	1199359.05	273	4393.2566	Adj R-squar Root MSE	ed = =	0.4052 51.12
performance	/ Coefficient	Std. err	t	P> t [9	5% conf.	interval]
charisma_resid 1.leader 1.money cons	54.56704 64.22236	4.241551 6.179826 6.178673 5.235753	8.83 10.39	0.000 42 0.000 52	.81998 .40027 .05785 2.5634	5.88146 66.73382 76.38686 143.1796

. reg perf charisma_resid i.leader i.money

The behavioral manipulation drives y; there is nothing, in this case from the rating, that correlates with y.

h	E.
Z	5

If we do the residualization for Fischer et al., (2024). We have Case 4:

. reg donation	cha	arisma_resid i	.manip	_chai	risma i.m	anip_cue p	anas_p	os -op	penness
Source		SS	df		MS	Number of		=	409
Model Residual		.51090437).7482643	10 398		 1090437 8010714	F(10, 398 Prob > F R-squared		= = =	2.42 0.0084 0.0573
+ Total	96	5.2591687	408	.23	5929335	Adj R-squ Root MSE	ared	=	0.0336 .4775
donati	on	Coefficient	Std.	err.	t	P> t	[95%]	conf.	interval]
charisma_res 1.manip_charis 1.manip_c panas_p panas_n extr agree conscie neur openne	ma ue eg av ab nt	.1166213 .0496189 .0046598 .0288227 0162122 0103089 .0301093 .0429167 .0323433 0261269	.0283 .047 .0476 .0358 .0490 .0230 .0264 .0256 .0268	7604 5132 3291 0468 0892 4122 L839 3155 5621	4.11 1.04 0.10 0.80 -0.33 -0.45 1.14 1.22 1.21 -1.02	0.000 0.298 0.922 0.422 0.741 0.655 0.255 0.223 0.228 0.309	.060 043 08 041 112 055 0218 0262 0203 076	9678 8945 6152 6354 7008 8155 2528 3744 5771	.1724524 .1432057 .0982647 .0992606 .080211 .0350831 .0820342 .1120863 .085061 .0243233
	ns	.0503764	.2285	5957 	0.22	0.826	3990	0296 	.4997824

What is the moral of the story?

• Do not use rated leadership measures, or rated measures of any construct to predict anything, unless you control the information environment and use IV regression.

 If you cannot manipulate then measure the behavior objectively (Emrich, Brower, Feldman, & Garland, 2001; Jacquart & Antonakis, 2015; Jensen et al., 2023; Tur, Harstad, & Antonakis, 2022).

References:

- Antonakis, J., d'Adda, G., Weber, R. A., & Zehnder, C. 2022. "Just Words? Just Speeches?" On the Economic Value of Charismatic Leadership. *Management Science*, 68(9): 6355-6381.
- Banks, G. C., Engemann, K. N., Williams, C. E., Gooty, J., McCauley, K. D., & Medaugh, M. R. 2017. A meta-analytic review and future research agenda of charismatic leadership. *The Leadership Quarterly*, 28(4): 508-529.
- Banks, G. C., Woznyj, H. M., & Mansfield, C. A. 2021. Where is "behavior" in organizational behavior? A call for a revolution in leadership research and beyond. *The Leadership Quarterly*, 34: 101581.
- Bastardoz, N., Matthews, M. J., Sajons, G. B., Ransom, T., Kelemen, T. K., & Matthews, S. H. 2023. Instrumental variables estimation: Assumptions, pitfalls, and guidelines. *The Leadership Quarterly*, 34(1): 101673.
- Emrich, C. G., Brower, H. H., Feldman, J. M., & Garland, H. 2001. Images in words: Presidential rhetoric, charisma, and greatness. *Administrative Science Quarterly*, 46: 527–557.
- Fischer, T. 2023. Measuring behaviors counterfactually. *The Leadership Quarterly*: 101750.
- Fischer, T., Dietz, J., & Antonakis, J. 2024. A fatal flaw: Positive leadership style research creates causal illusions. *The Leadership Quarterly*: 101771.
- Jacquart, P., & Antonakis, J. 2015. When does charisma matter for top-level leaders? Effect of attributional ambiguity. *Academy of Management Journal*, 58: 1051-1074.
- Jensen, U., Rohner, D., Bornet, O., Carron, D., Garner, P. N., Loupi, D., & Antonakis, J. 2023. Combating COVID-19 with charisma: Evidence on Governor Speeches in the United States. *The Leadership Quarterly*: 101702.
- Lord, R. G., Binning, J. F., Rush, M. C., & Thomas, J. C. 1978. The effect of performance cues and leader behavior on questionnaire ratings of leadership behavior. *Organizational Behavior and Human Performance*, 21(1): 27-39.
- Meslec, N., Curseu, P. L., Fodor, O. C., & Kenda, R. 2020. Effects of charismatic leadership and rewards on individual performance. *The Leadership Quarterly*, 31(6): 101423.
- Podsakoff, P. M., MacKenzie, S. B., Moorman, R. H., & Fetter, R. 1990. Transformational leader behaviors and their effects on follower's trust in leader, satisfaction, and organizational citizenship behaviors. *The Leadership Quarterly*, 1(2): 107-142.
- Tur, B., Harstad, J., & Antonakis, J. 2022. Effect of charismatic signaling in social media settings: Evidence from TED and Twitter. *The Leadership Quarterly*, 33(5): 101476.