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What is being 
argued. Some 
examples 
drawn from 
several 
hundred 
empirical 
papers 



So…

 But multicollinearity does not bias coefficients, right? It only inflates 
standard errors. My textbook says so… Goldberger says so! Dozens 
of Youtube videos say so…

 Multicollinearity may make it harder to achieve statistically 
significant results, but if results exhibit statistically significance, they 
should be trusted. (Leamer, 1983)



But?

 But multicollinearity does not bias coefficients, right? It only inflates 
standard errors. My textbook says so… Goldberger says so! Dozens 
of Youtube videos say so…

 Multicollinearity may make it harder to achieve statistically 
significant results, but if results exhibit statistically significance, they 
should be trusted. (Leamer, 1983)

 True only in one special, ideal case: regression is perfectly 
specified as per the Classical Linear Regression Model (CLRM). 

 If not…
 If there are any omitted variables, multicollinearity inflates omitted 

variable bias. 

 Omitted variable bias + positive correlations will result in “beta 
polarization,” coefficients pushed in opposite directions (Kalnins & 
Praitis Hill, 2025)

 Common factor (generalized structure of correlated measurement 
error) will have the same polarizing effects (Kalnins, 2018, 2022)
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But?

 But we have calculated VIF scores. They are below 5! Or 10! No 
multicollinearity concerns now, right? 

 Wrong! Low VIF scores may be associated with multicollinearity-
induced type 1 errors (Kalnins & Praitis Hill, 2025).

 Because: 
 Omitting variables decreases VIF scores and also causes beta 

polarization.

 VIF scores imply nothing about type 1 errors: Statistically significant 
coefficients are not made more legitimate by VIF scores below 
thresholds.
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But?

 If two variables are correlated and one’s sign flips when you add the 
other in a regression, is that totally ok? It is a suppressor variable.

 A suppressor variable increases the predictive validity of another 
variable or variables in the model.

  Essentially, suppressor variables can help reveal the true relationship 
between the independent variable (predictor) and the dependent 
variable (outcome), by accounting for certain variance that would 
otherwise obscure this relationship.

 Without the suppressor: The predictor might show a weak or no 
relationship with the outcome, or even an opposite relationship, due to 
confounding noise.

 With the suppressor: The suppressor variable “cleans up” this noise, 
allowing the predictor to reveal its true strength in relation to the 
outcome.



But?

 If two variables are correlated and one’s sign flips when you add the 
other in a regression, is that totally ok? It is a suppressor variable.

 Often Wrong! Signs can often flip from true direction of the effect 
to the opposite when beta coefficients are polarized by 
multicollinearity.



An example 
from Medicine

Vatcheva et al.
corr(BMI, WC) ~= 0.7

Variables Estimates
Models* for Systolic Blood Pressure Models* for Diastolic Blood Pressure

Model 1† Model 2‡ Model 3ˆ Model 1† Model 2‡ Model 3ˆ

BMI (body 
mass 

index)

Coeff.
estimate

0.4 0.53 0.34 0.43

SE 0.04 0.09 0.03 0.06

p-value <0.0001 <0.0001 <0.0001 <0.0001

VIF 1.01 4.48 1.01 4.48

Waist 
Circumf.

Coeff. 
estimate

0.13 −0.08 0.12 −0.05

SE 0.02 0.04 0.01 0.03

p-value <0.0001 0.0526 <0.0001 0.0679

VIF 1.06 4.67 1.06 4.67



The first 
scholar to raise 
concerns 
about this 
issue

 First Economics Nobel Laureate (1969) Ragnar Frisch agrees…

  “[The Statistician] will run the risk of adding more and more variates 
in the study until he gets a set that is in fact multiple collinear and 
where his attempt to determine a regression equation is therefore 
absurd. 

 In practice these cases are apt to arrive more frequently than is 
usually recognized. As a matter of fact I believe that a substantial 
part of the regression and correlation analyses which have been 
made on economic data in recent years is nonsense for this very 
reason” (Frisch, 1934: p. 6). 

 His explanation? Multiple variables are included in a single 
regression contain a common unobservable variable, with 
orthogonal measurement errors.

 He was on the right track about the common unobservable 
variable but not quite correct. Orthogonal measurement errors are 
not sufficient to generate nonsense results.



I will show why 
multicollinearity 
does more than 
just inflate errors 
when variables 
are omitted.
It inflates biases

 True data generating process 𝑦 = 𝛿𝑋
𝑙 𝑋 + 𝛿𝑍

𝑙 𝑍 + 𝑒𝑙 
 Z is not observable

 Regression estimates misspecified equation:
  𝑦 = 𝛽𝑋

𝑠𝑋 + 𝑒 where 𝑒 = 𝛿𝑍
𝑙 𝑍 + 𝑒𝑙.

 Omitted Variable Bias Equation

 𝛽𝑋
𝑠 = 𝛿𝑋

𝑙 +
𝑋𝑇𝑍

𝑋𝑇𝑋
𝛿𝑍

𝑙

 This derivation originally published in: Kalnins, A., & Praitis Hill, K. (2025). The VIF 
score. What is it good for? Absolutely nothing. Organizational research methods, 
28(1), 58-75.



Simplifying 
Assumptions 
(still 
generalizable)

 We assume there are two standardized variables x1 and x2 in the “short” 
regression matrix X,

  Omitted important third variable, also standardized, and designated by 
Z. 

 For even more simplicity, we assume true effects are 𝛿𝑋
𝑙 =

0
0

 but that 

𝛿𝑍
𝑙 = 1. 

 In other words, the true DGP y = Z + e, where e is a spherical error term 
with variance σ2. 

 Yet we can at best estimate 𝑦 = 𝛽𝑋
𝑠𝑋 + e because of the unavailability of 

Z. 

 Based on assumptions, the Omitted Variable Bias Equation can be 
simplified:

 𝛽𝑋
𝑠 = 𝛿𝑋

𝑙 +
𝑋𝑇𝑍

𝑋𝑇𝑋
𝛿𝑍

𝑙  becomes 𝛽𝑋
𝑠 =

𝑋𝑇𝑍

𝑋𝑇𝑋



Biases to beta 
coefficients 
where their 
true effects are 
zero!

 Given our standardization assumptions, 𝑋𝑇𝑍 = 𝑛
𝑐𝑜𝑟𝑟(𝑥1, 𝑍)

𝑐𝑜𝑟𝑟(𝑥2, 𝑍)
. 

 Correlation matrix 𝑋𝑇𝑋 = 𝑛
1 𝜃
𝜃 1

 with correlation θ between x1 and x2. 

 The inverse 𝑋𝑇𝑋 −1 =
1

𝑛 1−𝜃2

1 −𝜃
−𝜃 1

. 

 VIF statistic =
1

1−𝜃2 in a regression with kX = 2 (only two regressors)

  We can write 𝑋𝑇𝑋 −1 =
𝑉𝐼𝐹

𝑛

1 −𝜃
−𝜃 1

 with the VIF now treated as a scalar.

 The expected value of the estimated coefficients can be written as:

 𝛽𝑋
𝑠 =

𝑋𝑇𝑍

𝑋𝑇𝑋
=

𝑉𝐼𝐹

𝑛

1 −𝜃
−𝜃 1

𝑛
𝑐𝑜𝑟𝑟(𝑥1, 𝑍)

𝑐𝑜𝑟𝑟(𝑥2, 𝑍)
= 𝑉𝐼𝐹

𝑐𝑜𝑟𝑟 𝑥1, 𝑍 − 𝜃𝑐𝑜𝑟𝑟 𝑥2, 𝑍

𝑐𝑜𝑟𝑟(𝑥2, 𝑍) − 𝜃𝑐𝑜𝑟𝑟 𝑥1, 𝑍



What happens 
when 
correlation θ 
between the 
two x variables 
approaches 
one?

 𝛽𝑋
𝑠 = 𝑉𝐼𝐹

𝑐𝑜𝑟𝑟 𝑥1, 𝑍 − 𝜃𝑐𝑜𝑟𝑟 𝑥2, 𝑍

𝑐𝑜𝑟𝑟(𝑥2, 𝑍) − 𝜃𝑐𝑜𝑟𝑟 𝑥1, 𝑍
 

 VIF statistic =
1

1−𝜃2

 When θ → ±1, VIF approaches ∞ and thus causes the bias inflation.

  If corr(x1, Z) ≠ corr(x2, Z) and the difference is larger than smallest value e, 
while VIF approaches ∞. 

 [until matrix of correlations among corr(x1, Z) ≠ corr(x2, Z) loses its positive 
definiteness.]

 The bias approaches ±∞. 

 Further, if θ → 1 then there will always exist a θ close enough to 1 such 
that the quantities (corr(x1,Z) – θ corr(x2,Z)) and (corr(x2,Z) – θ corr(x1,Z)) 
will necessarily have opposite signs. 

 This combination yields 𝛽𝑋
𝑠 →

+∞
−∞

. Beta Polarization



Corr(x1,Z) = .2
Corr(x2,Z) = 0
When 
Corr(x1,x2) = 0, 
the Corrs = βs

𝛽𝑋
𝑠 = 𝑉𝐼𝐹

𝑐𝑜𝑟𝑟 𝑥1, 𝑍 − 𝜃𝑐𝑜𝑟𝑟 𝑥2, 𝑍

𝑐𝑜𝑟𝑟(𝑥2, 𝑍) − 𝜃𝑐𝑜𝑟𝑟 𝑥1, 𝑍



The technical 
contribution of 
my work

 I developed analytic theory that when two collinear variables 
share correlations with an unobservable common factor (e.g., 
common measurement error, Kalnins, 2018) or an omitted 
variable (Kalnins and Praitis Hill, 2025), their estimated beta 
coefficients become polarized and highly misleading.

 No matter how small their real effects, when correlation between 
two regressor variables approaches one:

 Estimated beta coefficients of these regressor variables on any 
dependent variable y will tend towards infinite magnitudes in 
opposite directions.  

 The standard errors at high correlations will grow as well 
(Goldberger is right about that!) 

 But often not enough to eliminate the false appearance of statistical 
significance of the near-infinite beta coefficients! 
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 Second, the frequently expressed perspective that 
multicollinearity is strictly a problem of small data set size, i.e., 
“micronumerosity,” is not correct.  

 In the case of common-factor multicollinearity, results will be 
misleading even if an infinite population were to be analyzed.

 Misleading results will be more likely to be viewed as meaningful 
with large data sets because of large t-statistics. 
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 First, multicollinearity does bias estimates—can create Type 1 
errors.

 Second, the frequently expressed perspective that 
multicollinearity is strictly a problem of small data set size, i.e., 
“micronumerosity,” is not correct.  

 In the case of common-factor multicollinearity, results will be 
misleading even if an infinite population were to be analyzed.

 Misleading results will be more likely to be viewed as meaningful 
with large data sets because of large t-statistics. 

 Third, the conventional wisdom that exogenous control variables 
are harmless (e.g., Angrist and Pischke, 2009) is wrong.

 Even a fully exogenous control variable can bias a variable of 
theoretical interest if the two are correlated via a common factor. 
Adding more control variables may exacerbate the problem. 

 Fourth, bivariate correlation as low as 0.3 can be problematic. 



Multi-
collinearity
can be a 
problem. What 
can be done 
about it?

 Report full bivariate correlation tables, including dependent 
variables, interaction terms and polynomial terms.

 No good reason to exclude interactions from correlation tables.

 If you use a lot of fixed effects, report full bivariate correlation 
tables of residuals after regression on only fixed effects.

 If two collinear variables, report multiple specifications: 
 Neither variable

 Variable 1 only

 Variable 2 only

 Both variables

 Note I am *not* advocating simply dropping a correlated variable. 
The point is to compare specifications (with and without control) 
and to compare effects of hypothesized variable.



What to do if 
you have 
hypotheses 
attempting to  
discriminate 
effects of 
correlated 
variables

 Authors should present clear, straightforward theory-based 
hypotheses.

 Data with multicollinearity should not be used to test tricky, overly 
clever theory.

 Counter-intuitive theory may be simply be “predicting” what are really 
type 1 errors

 “Horse-race” opposing hypotheses are subject to type 1 error being the 
winning horse.

 HARKing is particularly dangerous here.  

 Type 1 errors may “replicate” if the same controls are included by future 
authors in future studies.



Pay attention 
to your control 
variables

 Authors should present clear evidence that the correlated 
control’s coefficient (when focal variable is included) is:

 consistent in sign with existing theory

 consistent in sign and magnitude existing results from other sources. 

 Many papers ignore control results that make no sense (who cares? 
They are only controls!). Bad practice.

 If correlated control variable appears to have the “wrong sign” 
(omitted variable bias in wrong direction, multicollinearity inflates 
it), focal regressor’s coefficient size is also likely to be inflated by 
multicollinearity. This may be a type 1 error. 



What not to 
do: Previously 
Discredited 
mitigation 
approaches

 Mean-centering the regressors (Echambadi and Hess, 2007), 

 Residualizing one independent variable by regressing it on the 
other ones (Kennedy, 2003)

 Orthogonalization of the variables via principal components 
(Mitchell, 1991). 



What not to 
do: I discredit a 
few 
approaches to 
“deal with” 
multi-
collinearity 

 Penalized regression/Ridge regression:
 Can only reduce the size of the beta coefficients. 

 It cannot flip them back to the correct sign with a meaningful t-
statistic

 Collecting additional data/Replicating
 If CLRM does not hold, additional data will just yield more Type 1 

errors.

 Replicating could just yield the same Type 1 errors as the original.

 Partial Least Squares – Does not in any way “solve” the 
multicollinearity problem. It just assumes it away. Attributes 
effects to both variables equally.

 Do nothing – several texts advocate ignoring the problem. Based 
on supposed unbiasedness.



Some more 
flaws of VIF 
derived in 
Kalnins & 
Praitis Hill, 
2025

 When even one single relevant independent variable is unavailable 
and therefore omitted (like in every regression ever estimated by 
anyone anywhere) a VIF close to its minimum of 1 may be 
associated with amplified t-statistics that are sufficiently large to 
generate type 1 error. 

 The commonly accepted idea that low VIF scores provide sufficient 
information to dismiss concerns related to multicollinearity is not 
valid. Pure myth. 

 Related observation: insufficiently conservative VIF thresholds. 
Even if VIF scores could be used, hypothetically, to dismiss 
multicollinearity concerns, the currently accepted cutoffs of 10 or 
5 are far too high. 

 For example, correlation θ = 0.7 implies a VIF of 1.96 in a two-
variable regression model. While research routinely recognizes a 
bivariate correlation of 0.7 as highly problematic, a VIF < 2 is 
inappropriately viewed as perfectly acceptable using even the most 
stringent cutoffs.
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Thank you for 
listening!

 This presentation was an overview of my published papers:

 Kalnins, A. (2018). Multicollinearity: How common factors cause 
Type 1 errors in multivariate regression. Strategic Management 
Journal, 39(8), 2362-2385.

 Kalnins, A. (2022). When does multicollinearity bias coefficients 
and cause type 1 errors? A reconciliation of Lindner, Puck, and 
Verbeke (2020) with Kalnins (2018). Journal of International 
Business Studies, 53(7), 1536-1548.

 Kalnins, A., & Praitis Hill, K. (2025). The VIF score. What is it good 
for? Absolutely nothing. Organizational research methods, 28(1), 
58-75.
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