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Introduction

I The main purposes of regression analyses is to control for confounding influence
factors between a treatment and an outcome in order to obtain consistent causal
effect estimates

I In practice scholars often overstate the role of control variables

I In this paper we discuss why control variables do not necessarily have a causal
interpretation themselves and should therefore be interpreted carefully

I 47% of papers published in Organization Science and Strategic Management
Journal 2015–2020 and using regression methods explicitly discussed the estimated
effect sizes of controls
I Most common formulations such as “control variables have expected signs” or “it is

worth noting the coefficients of our control variables”

I We argue that this could lead to potentially misleading conclusions and a false
sense of accumulating empirical evidence



Recommendations in Previous Literature

I Control variables should carry the same importance as the main independent
variables (Becker, 2005; Spector and Brannick, 2011; Carlson and Wu, 2012; Atinc et al., 2012)

I Report all regression coefficients of control variables as well as their significance
levels (Becker, 2005)

I Controls should be given equal status to the main treatment variable in the analysis
(Spector and Brannick, 2011)

I Provide an ex-ante prediction of the sign of the relationship between the controls
and outcome variable based on theory (Atinc et al., 2012)

I Overall consensus in the organizational literature seems to be:
I Interpreting control variable estimates is safe
I They add to the body of cumulative evidence regarding a particular effect size



Structural Causal Models

z ← fZ (uz)

x ← fX (z , ux)

y ← fY (x , z , uY )

I The fi ’s denote the causal mechanisms in the model
I Are not restricted to be linear as in traditional SEM

I The ui ’s refer to background factors that are determined outside of the model

I Assignment operator (←) captures asymmetry of causal relationships
I x ← a · z 6= z ← x/a

I Similar to definition of “structure” according to Cowles foundation



Directed Acyclic Graphs

z ← fz(uz)

x ← fx(z , ux)

y ← fy (x , z , uy )
X

Z

Y

I In a fully specified SCM, every counterfactual quantity is computable

I In most social science contexts it’s hard to know the causal mechanisms fi and
distribution of background factors P(U)

I Therefore, restrict attention to qualitative causal information of the model, which
can be encoded by a graph G
I Nodes V : variables in the model
I Directed edges E : causal relationships in the model



Directed Acyclic Graphs

I No functional form or distributional assumptions means that framework remains
fully nonparametric
I Particularly helpful in fields where theory is purely qualitative and no shape

restrictions on can be derived (Matzkin, 2007)

I Z L9999K Y is a shortcut notation for unobserved common causes Z ← U → Y

I Acyclicity
I Directed cycles such as A→ B → C → A are excluded
I This means there are no feedback loops
I Otherwise A could be a cause of itself
I Gives rise to what economists call a recursive model (Wold, 1954)
I Extensions of the SCM framework to cyclic graphs exist (Bongers et al., 2021)

Structural Econometrics vs. PO Recursive vs. Interdependent Systems



D-Separation

I DAGs are such a useful tool because they are able to efficiently encode conditional
independence relationships:

Chain: A→ B → C ⇒ A 6⊥⊥ C and A ⊥⊥ C |B
Fork: A← B → C ⇒ A 6⊥⊥ C and A ⊥⊥ C |B
Collider: A→ B ← C ⇒ A ⊥⊥ C and A 6⊥⊥ C |B

I The same holds for longer paths in the graph
I Conditioning on a variable along a chain or fork blocks (“d-separates”) the path
I Conditioning on a collider opens the path



Collider Bias Example

Source: “Collider bias undermines our understanding of COVID-19 disease risk and severity” (2020, Nature Comm.)

https://www.nature.com/articles/s41467-020-19478-2


Backdoor Adjustment

Definition: The Backdoor Criterion (Pearl et al., 2016, p. 61)

Given an ordered pair of of variables (X ,Y ) in a directed acyclic graph G , a set of
variables Z satisfies the backdoor criterion relative to (X ,Y ) if no node in Z is a
descendant of X , and Z blocks every path between X and Y that contains an arrow
into X .

I Intuition: block all spurious paths between X and Y while leaving direct paths
unperturbed and creating no new spurious paths
I Avoid introducing collider bias (“bad controls”)

I Finding suitable adjustment sets Z can be easily automated (Textor and Lískiewicz,

2011)



Examples with Valid Control Variable Z1



Simulation Setup

I For illustration we simulate data from the SCMs implied by (a)–(d)

I For simplicity we use linear relationships and effect sizes normalized to one; e.g., for
(a)

z1 ← u + ε1,

z2 ← u + ε2,

x ← z1 + ε3,

y ← x + z2 + ε4,

with n = 10, 000, and U , εi being standard normal

I Standard errors are bootstrapped with 1, 000 replications



Simulation Results



Example #1: Hoffman and Strezhnev (2023)
I Research question: effect of longer travel time on default judgments in eviction

cases

I OLS analysis of 200,000+ eviction proceedings in Philadelphia (2005–2021)

I Main finding: One-hour increase in travel time raises default judgment likelihood by
3.8–8.6%

I They control for neighborhood characteristics and building types, among other
things

I The find a positive and significant effect of multi-unit apartment buildings
(compared to row houses or single family dwelling) on the probability of default
judgements
I Unlikely to have a causal interpretation
I Building characteristics might be correlated with other factors such as unfavorable

terms in residential leases or the geographical distribution of dwellings within the
city



Example #2: Azoulay et al. (2021)
I Investigate effect of early career exposure to frontier research on the career

trajectory of potential innovators

I Empirical setting: Associate Training Program (ATP) of NIH

I ATP started in 1953 for recent MD graduates

I Participants received 2–3 years research training at NIH intramural campus

I Popular among young physicians during Vietnam War period

I Screening criteria for ATP applicants: research activities, academic achievements,
experience, institutional reputation

I Selection based on observable characteristics at interview stage
I Difficulty in predicting future research potential beyond observable markers

I ATP participants twice as likely to pursue research-focused career, leading to more
publications, citations, grant funding, prestigious awards, and membership in
National Academy of Sciences



Causal Diagram Capturing Assumptions by Azoulay et al.



Example #3: Analyst Coverage & Innovation

I He and Tian (2013): Negative relationship between analyst coverage and patenting
I Study of U.S. public firms from 1993 to 2005
I Utilizes difference-in-differences and instrumental variable approach

I Theorized: Analyst pressure may worsen managerial myopia and impede innovation
investment

I Analyst coverage commonly used as control variable in studies of R&D activities in
publicly listed firms

I Less stringent identification strategies may yield unexpected results

I Chen et al. (2016) and Huang et al. (2022): Find positive effects of analyst
coverage on patents, seemingly contradicting He and Tian (2013)
I Interpreting positive regression coefficients as evidence against He and Tian (2013)

would be a mistake
I No Bayesian updating about the effect of analyst coverage should take place



Summary

I The purpose of regression analysis in organizational research is typically to build
and test theories that explain the causal mechanisms (Sutton and Staw, 1995)

I Attaching substantive meaning to the marginal effects of biased control variables
can lead to erroneous managerial and policy conclusions

I Control variables can be endogenous and will likely be so in practice (Frölich, 2008)

I Controls should be chosen to close all backdoor paths between a treatment and
outcome, based on a theoretical model of the context under study (Bono and

McNamara, 2011)

I It is thereby not necessary to include all causal influence factors of the outcome
variable in a regression

I It might be easier to control the treatment assignment mechanism, if institutional
knowledge is richer about what determines treatment take-up (see Azoulay et al.)



Our Recommendations

I Since accounting for all influence factors of the outcome might be unrealistic in
many contexts, interpreting control variables in light of theory is potentially
dangerous

I We recommend to treat controls as nuisance parameters, which are included in the
analysis for identification purposes (and discussed as such) but their effects are not
interpreted
I Corresponds to the way control variables are treated by matching estimators

(Heckman et al., 1998) and modern ML methods (Chernozhukov et al., 2018;

Hünermund et al., 2023)

I Control variable should not be promoted to have equal status with the other
variables and formulations such as “estimates of control variables have expected
signs” should be avoided

I As a “nudge”, we find it appropriate that authors omit their coefficients entirely
from regression tables or relegate them to an appendix



Our Preferred Regression Table Format



A “Compromise”
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Structural Econometrics vs. Potential Outcomes

I Econometrics is currently dominated by two competing streams

I Structural econometrics
I In practice, relies on distributional assumptions and (parametric) shape restrictions
I Work by, e.g., Matzkin (2007) that aims to relax parametric assumptions, but

I still relies on (weaker) shape restrictions, and is not widely adopted in applied work

I Potential outcomes framework (Rubin, 1974; Imbens and Rubin, 2015)
I Does impose crucial identifying assumptions (e.g., ignorability) without reference to

an underlying model (“black box character”)
I A feature that has been frequently criticized by the structural camp (e.g., by

Rosenzweig and Wolpin, 2000 and Heckman and Urzua, 2009)

I In practice, causal inference in PO boils down to the four “tricks of the trade”
(matching, IV, RDD, difference-in-differences)

⇒ DAGs are a perfect “middle ground” between structural econometrics and PO

Back



Recursive versus Interdependent Systems

I DAGs represent recursive systems, but many standard models in economics are
interdependent (Marshallian cross, game theory, etc.)

I This connects to an old debate within econometrics about the causal interpretation
of recursive versus interdependent models that emerged in the aftermath of
Haavelmo’s celebrated 1943 paper

I One central argument (Bentzel and Hansen, 1954 - 1955; Strotz and Wold, 1960):
I Individual equations in an interdependent model do not have a causal interpretation

in the sense of a stimulus-response relationship (Strotz and Wold, 1960, p. 417)
I Interdependent systems with equilibrium conditions are regarded as a shortcut

(Wold, 1960; Imbens, 2014) description of the underlying dynamic behavioral
processes



Recursive versus Interdependent Systems

I In this context, Strotz and Wold (1960) discuss the example of the cobweb model:

qh,t−1

pt−1

qh,t

pt

qh,t+1

pt+1

z1,t−1

z2,t−1

z1,t

z2,t

z1,t+1

z2,t+1

qh,t ← γ + δpt−1 + νz1,t + u1,t ,

pt ← α− βqh,t + εz2,t + u2,t .

pt−1 = pt

⇒

qh,t

pt

z1,t

z2,t

qh,t ← γ + δpt + νz1,t + u1,t

pt ← α− βqh,t + εz2,t + u2,t



Recursive versus Interdependent Systems

I However, equilibrium assumption pt−1 = pt carries no behavioral interpretation

I Individual equations in interdependent system do not represent autonomous causal
relationships in the stimulus-response sense (Heckman and Pinto, 2013)
I Endogenous variables are determined jointly by all equations in the system

(Matzkin, 2013)
I Not possible, e.g., to directly manipulate pt to bring about a desired change in qh,t

I Equilibrium models can of course still be useful for learning about causal parameters

I But, if individual mechanisms are supposed to be interpreted as stimulus-response
relationships, cyclic patterns need to be excluded (Woodward, 2003; Cartwright,
2007)
I For this reason, potential outcomes framework (Rubin, 1974; Imbens and Rubin,

2015) also implicitly maintains the assumption of acyclicity (Heckman and Vytlacil,
2007)
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