Understanding linear and nonlinear interactions

Jeremy Dawson CARMA webcast lecture 15 September 2023

Lecture Overview

- Testing and interpreting linear 2-way interactions
 - Testing interaction effects
 - Interpreting effects
 - Post-hoc testing
- Extensions to generalized linear models
- Extensions to quadratic regression models
- Other extensions

Two-way linear interactions

Moderation

- Often used synonymously with interaction effects
- Simple case: where the relationship between two variables (x and y) depends on the value of a third variable (z)
- For example:

Training → Job performance Autonomy is a moderator Effect is stronger (more positive) when autonomy is higher

A simple moderated regression model

Equation: $y = a + b_1 x + b_2 z + b_3 xz + \varepsilon$

b_3 represents the moderation effect

- Note: b₃ cannot be interpreted in isolation; also need to consider b₁ and b₂ to get full effect!
- If b_3 significant, we then interpret the model

Why is this a moderated model?

• Can be rewritten as

$$y = (a + b_2 z) + (b_1 + b_3 z)x + \varepsilon$$

- Therefore both the intercept and the slope (of x) vary as a linear function of z
- Note that b_1 is the slope of x when z = 0

Testing two-way interactions

- IV: TRAIN (extent of training)
- Moderator: AGE (age)
- DV: JOBSAT (job satisfaction)

```
In SPSS:
compute TRAXAGE = TRAIN*AGE.
regression /statistics = r coeff bcov
/dependent = JOBSAT
/method = enter TRAIN AGE TRAXAGE.
```

```
In R:
intmod1 <- lm(JOBSAT ~ TRAIN*AGE, data=PDW)
summary(intmod1)</pre>
```

In Stata:
regress JOBSAT c.TRAIN##c.AGE

Plotting two-way interactions

- Some software will do this automatically
- e.g. in R, use the "marginaleffects" package and the "plot_predictions" command
- In Stata, can use "margins" with "plot"
- If not (e.g. in SPSS), can use Excel tools at <u>www.jeremydawson.com/slopes.htm</u>

2-way linear interactions template

Key questions along the way...

- Should you center variables before the analysis?
 Doesn't matter in terms of the findings, but some interpretation is easier if you do
- What values of the moderator should the effect be plotted at?
 - Should be "typical" low and high values not necessarily 1SD below and above the mean

Further probing of the effect

- A good plot is often sufficient if the moderator is continuous!
 - Especially if it also contains confidence bands (e.g. using "marginaleffects" package in R)
- Simple slope tests: specific conditional tests of the xy relationship at particular values of the moderator
 Will say more about these in a moment
- "Regions of significance" (Johnson-Neyman technique) not recommended

Simple slope tests

 Common question: is the relationship between work demands and job satisfaction still significant when training is high, or is it only when training is low?

Simple slope tests: two methods

Direct method

 Uses elements of the coefficient covariance matrix to calculate the standard error of the slope at particular value, and test for significance

Indirect method

 Center the moderator around the value you want to test at – then re-run analysis. Coefficient of IV is the simple slope (with corresponding p-value, confidence interval etc.)

Simple slope tests: a warning!

- These only tell us whether there is evidence of a non-zero effect at a **specific** value of the moderator
- Often this is entirely arbitrary and thus the results are not very informative (look at what happens if we change the high value of the moderator in our example)
- Better to choose **meaningful** values of the moderator, not just 1 SD above and below the mean

Other features to describe

- Use the coefficient **b**₃ to describe the effect: this is the change in the x-y slope as z increases by one unit
- Is the x-y effect always positive, mostly positive, a crossover effect etc.?
- Is the effect a disordinal one where the lines cross?
- If they do, the lines cross at value of X where the value of Z makes no difference to y. This can be calculated at

$$x = -\frac{b_2}{b_3}$$

(Equation: $y = a + b_1 x + b_2 z + b_3 xz$)

Interactions with generalized linear models

16

Generalized linear models

- Apply a link function to the linear combination of x and z to convert it to the required metric
- Instead of

$$\mathbf{y} = \mathbf{a} + \mathbf{b}_1 \mathbf{x} + \mathbf{b}_2 \mathbf{z} + \mathbf{b}_3 \mathbf{x} \mathbf{z} + \mathbf{\varepsilon}$$

• We have

$$E[y] = g^{-1}(a + b_1x + b_2z + b_3xz)$$

• For example:

- Binary logistic regression (logit link function)
- Poisson regression (log link function)
- Ordinal logistic regression (ordered logit link)

Moderation with generalized linear models

- In some senses this is easy: if you know how to used the generalized linear model, and know how test linear interactions, the two are just combined!
- However, it becomes more difficult in the interpretation

Example (Rönkkö et al., 2022)

Rönkkö, M., Aalto, E., Tenhunen, H., & Aguirre-Urreta, M. I. (2022). Eight simple guidelines for improved understanding of transformations and nonlinear effects. *Organizational Research Methods*, *25*(1), 48–87. https://doi.org/10.1177/1094428121991907

Key issues to consider

- Is the moderation desired of the linear effect, or of the proportion effect?
- Are you using the right model for this?
- Three possibilities to interpret differences:
 - Testing the linear predictor metric
 - Testing the average marginal effect
 - Testing differences between four points

Interactions with quadratic regression models

Quadratic models

• Quadratic equation: $y = a + b_1 x + b_2 x^2$

Quadratic interactions

•
$$y = a + b_1 x + b_2 x^2 + b_3 z + b_4 xz + b_5 x^2 z$$

• If b₅ significant, this means the curvature is moderated

• If b₄ significant, this means the location of the curve is moderated

Probing curvilinear interactions

- Most important thing: plot the effect!
 Quadratic two-way interactions sheet
- Identify where maximum/minimum point occurs
 - It occurs where $x = -b_1/2b_2$, where b_1 is X coefficient and b_2 is X² coefficient
 - Use indirect method to center around moderator value and find this for each curve plotted
- Are "simple slope" tests necessary?

Variations on simple slope tests

- Three versions:
 - i. Testing whether there is a *curvilinear* effect at a particular value of the moderator
 - ii. Testing whether there is *any* effect at a particular value of the moderator
 - iii.Testing whether there is any effect at a particular value of the moderator *and* a particular value of the independent variable

Where do the curves cross?

•
$$y = a + b_1 x + b_2 x^2 + b_3 z + b_4 xz + b_5 x^2 z$$

• (Maximum of) two crossing points for curves:

$$x = \frac{-b_4 \pm \sqrt{b_4^2 - 4b_3b_5}}{2b_5}$$

Should you do these tests?

• Only if there's a specific need to!

Other extensions

28

Multilevel models

- Interactions can be plotted using the same template as relevant for single-level interactions
 - Estimates produced in output are equivalent to unstandardized coefficients in ordinary regression
 - Care is needed over mean & SD of variables
- However, in general, simple slope & slope difference tests in SPSS need to use the indirect method

Three-way linear interactions

- Doubly-moderated models $y = a + b_1x_1 + b_2x_2 + b_3x_3 + b_4x_1x_2 + b_5x_1x_3 + b_6x_2x_3 + b_7x_1x_2x_3$
- As before, b₇ cannot be interpreted in isolation: needs plotting
- Can also be supplemented by slope difference test (Dawson & Richter, 2006)

30

Three-way quadratic interactions

- $y = a + b_1 x + b_2 x^2 + b_3 z + b_4 w$
- $+ b_5 xz + b_6 x^2 z + b_7 xw + b_8 x^2 w$
- $+ b_{9}^{2}zw + b_{10}^{2}xzw + b_{11}^{2}x^{2}zw$
- No direct equivalent to slope difference test: but can test whether maximum/minimum points, or the curvature, are the same on two curves

Moderation and mediation

- Needs a whole other session!
- However, PROCESS is a good start
- Worth working out all equations (see e.g. Edwards & Lambert, 2007)
- Most specific hypotheses can be tested using bootstrapping (or delta method, e.g. in Stata)

Interactions within structural equation models

- In principle, all techniques that apply to regression apply to SEMs
 - Specialized packages and functions, e.g. semTools::probe2WayMC
 - Note: specialized packages can be black boxes
- Simple slopes tests can be done with Wald tests
 require understanding the scales of the latent variables to choose meaningful values of moderators

Questions?

34