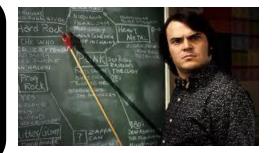
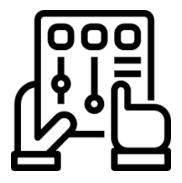
Computational Process Theorizing

Goran Kuljanin, Ph.D.


Is HR Important to Organizations?

FORTUNE MAGAZINE

It Begs the Question: What Kind of Knowledge Does Organizational Science Accumulate?


To what extent does our accumulated knowledge help us explain how something works, functions, or operates?

To what extent does our accumulated knowledge help us predict what will happen?

To what extent does our accumulated knowledge help us control/direct what will happen?

Narrative Construct Theories Versus Computational Process Theories

Contents lists available at ScienceDirect

The Leadership Quarterly

eveloping these types of theories for organizational science

Table 1

A Typology f	or Theory Development.				
	Theory Modality				
Theory Focus	Narrative	Computational			
	Definition: Uses narrative rationale to predict how constructs covary	Definition: Uses mathematics and logic to highlight consequences of construct relationships, especially consequences over time			
Constructs	Narrative Construct Theories	Example: Park et al. (2015)			
	Note: Most common form of theorizing in organizational science	Note: Commonly comes in the form of what-if scenario analyses			
	Definition: Uses a narrative rationale to describe how actors think, feel, behave, and socialize with each other in pursuit of pertinent goals	Definition: Uses mathematics, logic, and computer programs to describe how actors think, feel, behave, and socialize with each other in pursuit of pertinent goals			
Processes	Example: Klein et al. (2006)	Ex Computational Process Theories			
	Note: Qualitative research investigating work processes	Note : Explicit, formal specification of operational processes; we argue the benefits of			

process model we develop, to explicitly demonstrate the differences between construct and process thinking. We then discuss how computational process theories advance theory development. We conclude with a discussion of the long-term benefits of computational process theories for organizational science.

Organizational Science Accumulates Construct Knowledge

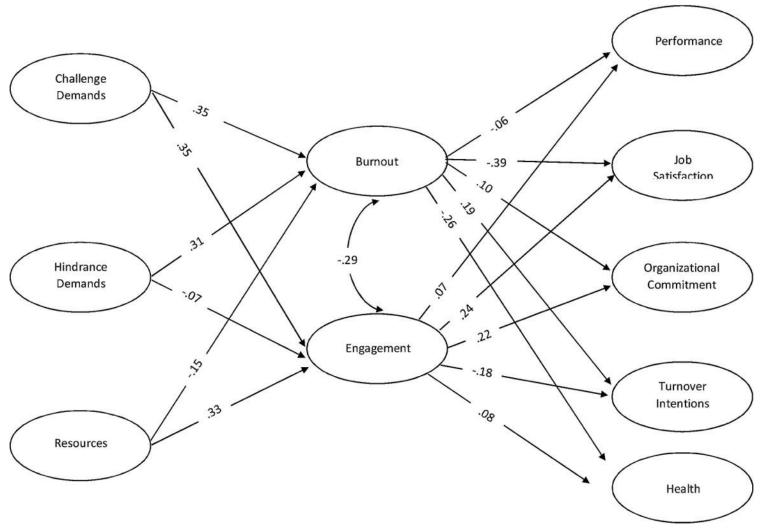
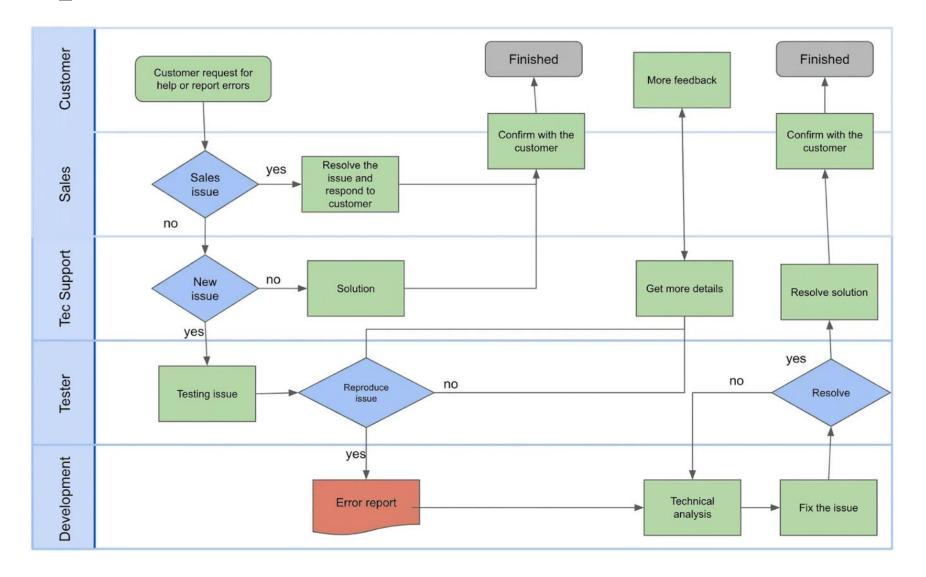
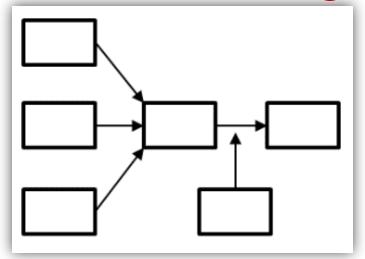



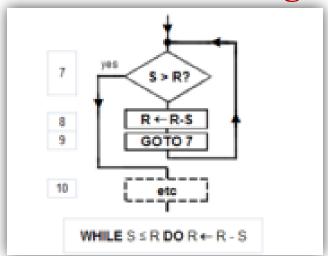
Fig. 2. Results of MASEM Mean Average ß Model of Differentiated JD-R Framework

Note. Values are average standardized beta coefficients for the entire population distribution of possible values.

Source: Goering, D. D., Shimazu, A., Zhou, F., Wada, T., & Sakai, R. (2017). Not if, but how they differ: A meta-analytic test of the nomological networks of burnout and engagement. *Burnout Research*, 5, 21-34.


Example of Accumulated Process Knowledge

Source: https://trailhead.salesforce.com/content/learn/modules/business-process-mapping/understand-universal-process-notation


Knowledge Comes in Different Forms

Construct Knowledge

- Focus on Relations Among Variables
- Mediation as Explanation
- Moderation as Contingencies
- **❖** Aggregates the Details

Process Knowledge

- Focus on Actors Enacting Sequences of Actions
- Mechanisms/Rules Applied to Actors as Explanations and Generators of Actions
- Explicates the Details: Who, What, Where, When, Why, and How

Fundamental Law of Organizations

The People Make the Place Expressed More Explicitly Into Its Three Components:

- (1) Heterogeneous actors...
- (2) think, feel, behave, and socialize...
- (3) to create and evolve their (physical, task, social) environments in a bottom-up fashion.

Computational Process Theories

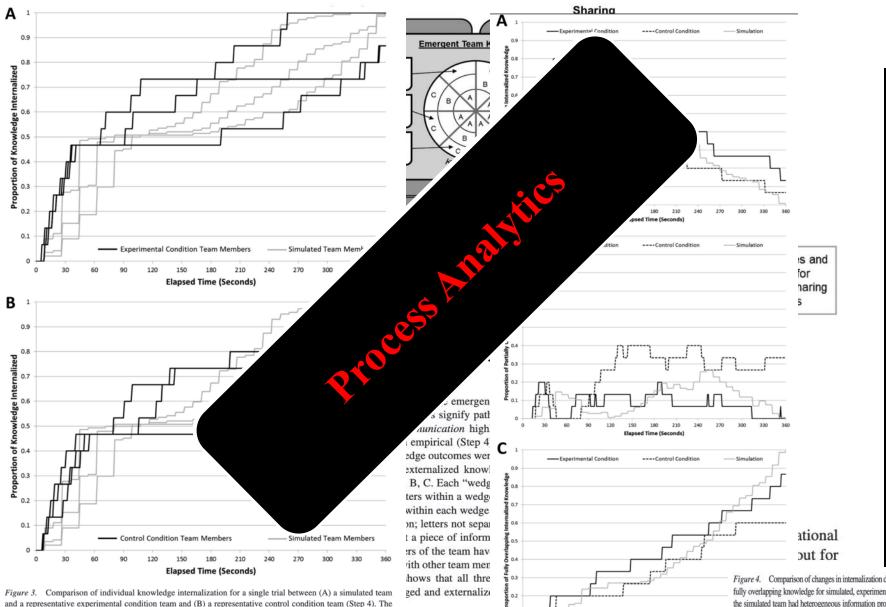


Figure 3. Comparison of individual knowledge internalization for a single trial between (A) a simulated team and a representative experimental condition team and (B) a representative control condition team (Step 4). The same simulated team is shown in both panels. Agents in the simulated team had heterogeneous information processing skills, equal speaking rates, and operated in an environment with high specialization (75% unique information). Data from the control and experimental teams were from Trial 10.

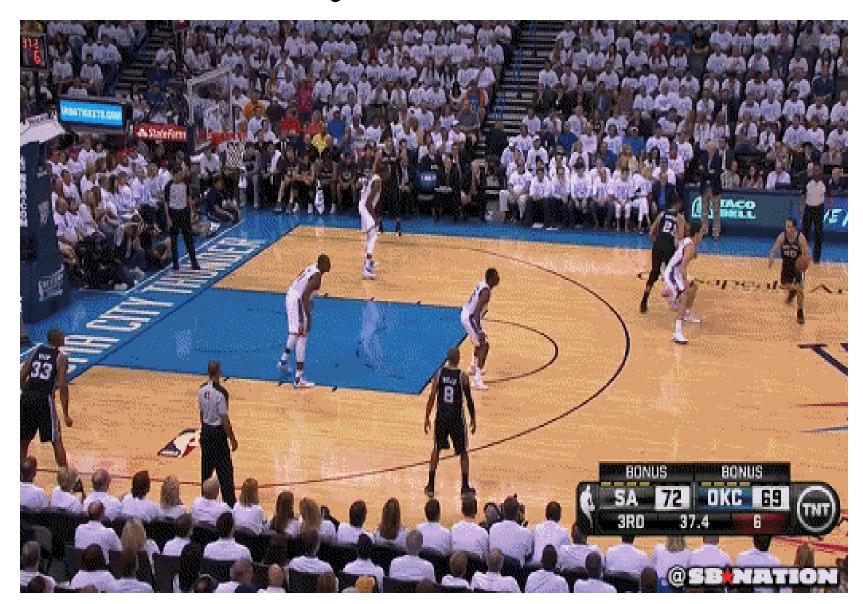
Figure 4. Comparison of changes in internalization distribution for (A) nonoverlapping, (B) partially overlapping, and (C) fully overlapping knowledge for simulated, experimental, and control condition teams for a single trial (Step 4). Agents in the simulated team had heterogeneous information processing skills, equal speaking rates, and operated in an environment with high specialization (75% unique information). Data from the control and experimental teams were from Trial 10.

Managing a Professional Basketball Team

This management adviser seeks to support the front-line manager.

This front-line manager seeks advice on how to manage team human capital.

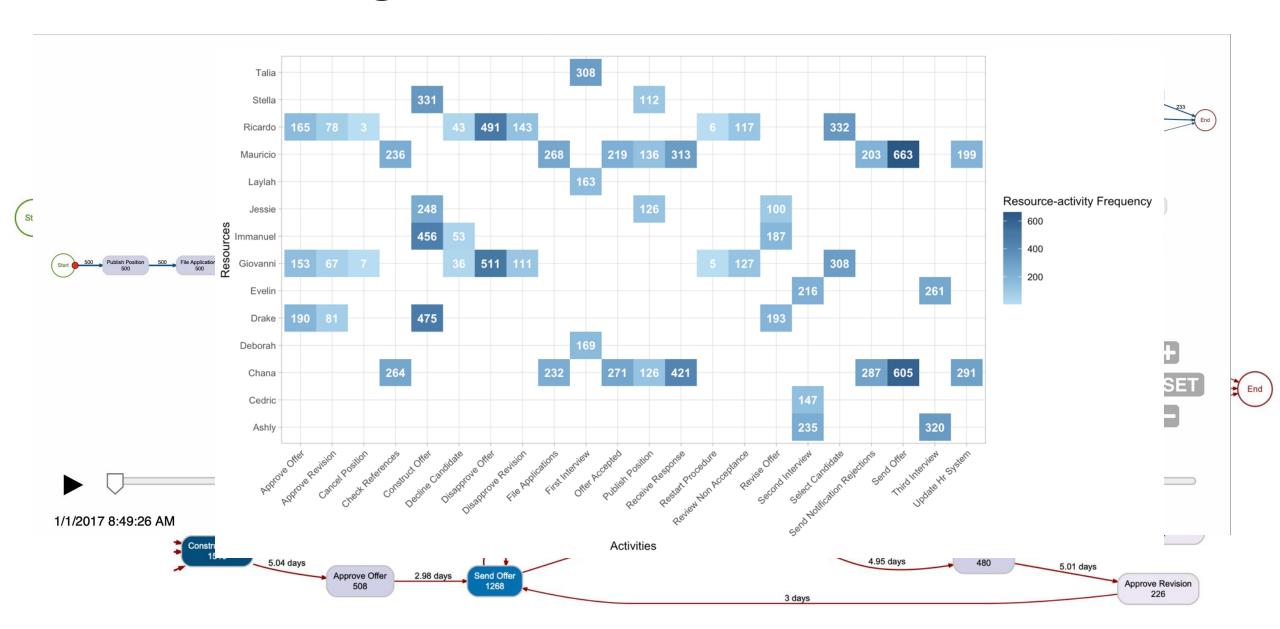
How to Win Basketball Games?


Actual Predictions on the Testing (Holdout) Data

	J C				4.67						
	Game ID	Real Point Differential	Predicted Point Differential	Prediction Difference	Correct Game Prediction		Game ID	Real Point Differential	Predicted Point Differential	Prediction Difference	Correct Game Pred
A	101	12	14.58	-2.58	1		151	-14	-11.57	-2.43	1
_ 10	102	7	6.95	0.05	1	-	152	17	17.93	-0.93	1
	103	19	12.78	6.22	1		153	25	23.64	1.36	1
	104	14	5.39	8.61	1		154	-5	-9.47	4.47	1
	105	8	6.88	1.12	1		155	-9	-9.09	0.09	1
The same of	106	15	11.27	3.73	1		156	18	14.71	3.29	1
- 52 m	107	-8	-9.13	1.13	1	ĺ	157	-16	-12.00	-4.00	1
	108	28	26.35	1.65	1	li e	158	16	15.94	0.06	1
	109	-12	-15.28	3.28	1		159	-3	-3.88	0.88	1
	110	8	9.72	-1.72	1	V —	160	7	5.83	1.17	1
	111	3	-0.50	3.50	0		161	11	8.94	2.06	1
	112	-18	-17.77	-0.23	1		162	-3	-0.31	-2.69	1
	113	-1	0.33	-1.33	0		163	12	4.97	7.03	1
	114	16	12.23	3.77	1		164	5	3.23	1.77	1
6.00	115	-9	-8.02	-0.98	1	Goal	165	12	13.44	-1.44	1
100	116	-19	-14.67	-4.33	1	[-09	166	-6	-15.28	9.28	1
	117	9	0.97	8.03	1		167	6	2.50	3.50	1
6	ľ	'ercei	ntage o Mea								/o!!!
Se l	P	'ercei)						oints!		/o!!!
S.	131	ercei)								1
			Mea	n Ab			181 182	2.96 P	19.54 -0.69	1.46 -0.31	
	131 132 133	-11 12 1	10.42 12.79 -2.53	-0.58 -0.79 3.53			181 182 183	21 -1 34	19.54 -0.69 31.01	1.46 -0.31 2.99	
	131 132 133 134	-11 12 1 -19	-10.42 12.79 -2.53 -12.42	-0.58 -0.79 3.53 -6.58			181 182 183 184	21 -1 34 -6	19.54 -0.69 31.01 -5.95	1.46 -0.31 2.99 -0.05	1 1 1
	131 132 133 134 135	-11 12 1 -19	-10.42 12.79 -2.53 -12.42 14.33	-0.58 -0.79 3.53 -6.58 3.67			181 182 183 184 185	21 -1 34 -6 -2	19.54 -0.69 31.01 -5.95 -2.15	1.46 -0.31 2.99 -0.05 0.15	1 1 1 1
	131 132 133 134 135 136	-11 12 1 -19 18	-10.42 12.79 -2.53 -12.42 14.33 -5.58	-0.58 -0.79 3.53 -6.58 3.67 -4.42			181 182 183 184 185 186	21 -1 34 -6 -2 21	19.54 -0.69 31.01 -5.95 -2.15 29.10	1.46 -0.31 2.99 -0.05 0.15 -8.10	1 1 1 1 1
	131 132 133 134 135 136 137	-11 12 1 -19 18 -10	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81			181 182 183 184 185 186 187	21 -1 34 -6 -2 21 -8	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41	1 1 1 1 1 1
200	131 132 133 134 135 136 137 138	-11 12 1 -19 18 -10 18	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29			181 182 183 184 185 186 187 188	21 -1 34 -6 -2 21 -8 -11	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96	1 1 1 1 1 1
Z C	131 132 133 134 135 136 137 138 139	-11 12 1 -19 18 -10 18 28 -22	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70			181 182 183 184 185 186 187 188	21 -1 34 -6 -2 21 -8 -11 3	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68	
, N C	131 132 133 134 135 136 137 138	-11 12 1 -19 18 -10 18 28 -22	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71			181 182 183 184 185 186 187 188 189	21 -1 34 -6 -2 21 -8 -111 3	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22	1 1 1 1 1 1 1 1 1
N C	131 132 133 134 135 136 137 138 139 140	-11 12 1 -19 18 -10 18 28 -22 -14	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70 -11.29 -7.80	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71 0.80			181 182 183 184 185 186 187 188 189 190 191	21 -1 34 -6 -2 21 -8 -11 3	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22 1.22	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22 0.78	
N C	131 132 133 134 135 136 137 138 139	-11 12 1 -19 18 -10 18 28 -22	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70 -11.29 -7.80 10.33	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71 0.80 0.67			181 182 183 184 185 186 187 188 189 190 191 192	21 -1 34 -6 -2 21 -8 -11 3 -3 2	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22 1.22 2.55	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22 0.78 -1.55	
N C	131 132 133 134 135 136 137 138 139 140 141 142	-11 12 1 -19 18 -10 18 28 -22 -14 -7 11	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70 -11.29 -7.80 10.33 0.68	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71 0.80 0.67 -6.68			181 182 183 184 185 186 187 188 189 190 191 192	21 -1 34 -6 -2 21 -8 -11 3 -3 2 1 -15	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22 1.22 2.55 -3.63	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22 0.78 -1.55 -11.37	
N C	131 132 133 134 135 136 137 138 139 140 141	-11 12 1 -19 18 -10 18 28 -22 -14 -7	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70 -11.29 -7.80 10.33	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71 0.80 0.67			181 182 183 184 185 186 187 188 189 190 191 192 193 194	21 -1 34 -6 -2 21 -8 -11 3 -3 2 1 1-15 23	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22 1.22 2.55 -3.63 20.80	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22 0.78 -1.55 -11.37 2.20	
	131 132 133 134 135 136 137 138 139 140 141 142 143 144	-11 12 1 -19 18 -10 18 28 -22 -14 -7 11 -6 12	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70 -11.29 -7.80 10.33 0.68 8.06 -12.43	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71 0.80 0.67 -6.68 3.94 1.43			181 182 183 184 185 186 187 188 189 190 191 192 193 194 195	21 -1 34 -6 -2 21 -8 -11 3 -3 2 1 -15 23 -8	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22 1.22 2.55 -3.63 20.80 -7.02	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22 0.78 -1.55 -11.37 2.20 -0.98	
N	131 132 133 134 135 136 137 138 139 140 141 142 143	-11 12 1 -19 18 -10 18 28 -22 -14 -7 11 -6	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70 -11.29 -7.80 10.33 0.68	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71 0.80 0.67 -6.68			181 182 183 184 185 186 187 188 189 190 191 192 193 194	21 -1 34 -6 -2 21 -8 -11 3 -3 2 1 1-15 23	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22 1.22 2.55 -3.63 20.80 -7.02 5.50	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22 0.78 -1.55 -11.37 2.20 -0.98 2.50	
Ne	131 132 133 134 135 136 137 138 139 140 141 142 143 144	-11 12 1 -19 18 -10 18 28 -22 -14 -7 11 -6 12	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70 -11.29 -7.80 10.33 0.68 8.06 -12.43	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71 0.80 0.67 -6.68 3.94 1.43			181 182 183 184 185 186 187 188 189 190 191 192 193 194 195	21 -1 34 -6 -2 21 -8 -11 3 -3 2 1 -15 23 -8	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22 1.22 2.55 -3.63 20.80 -7.02 5.50 -19.91	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22 0.78 -1.55 -11.37 2.20 -0.98	
Z	131 132 133 134 135 136 137 138 139 140 141 142 143 144 145	-11 12 1 -19 18 -10 18 28 -22 -14 -7 11 -6 12 -11	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70 -11.29 -7.80 10.33 0.68 8.06 -12.43 34.11	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71 0.80 0.67 -6.68 3.94 1.43 6.89 3.15 4.59			181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198	21 -1 34 -6 -2 21 -8 -11 3 -3 2 1 -15 23 -8 8	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22 1.22 2.55 -3.63 20.80 -7.02 5.50 -19.91 3.74	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22 0.78 -1.55 -11.37 2.20 -0.98 2.50 -2.09 4.26	
NC	131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146	-11 12 1 -19 18 -10 18 28 -22 -14 -7 11 -6 12 -11 41	-10.42 12.79 -2.53 -12.42 14.33 -5.58 20.81 29.29 -22.70 -11.29 -7.80 10.33 0.68 8.06 -12.43 34.11 11.85	-0.58 -0.79 3.53 -6.58 3.67 -4.42 -2.81 -1.29 0.70 -2.71 0.80 0.67 -6.68 3.94 1.43 6.89 3.15			181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197	21 -1 34 -6 -2 21 -8 -11 3 -3 2 1 -15 23 -8 8	19.54 -0.69 31.01 -5.95 -2.15 29.10 -5.59 -7.04 5.68 -4.22 1.22 2.55 -3.63 20.80 -7.02 5.50 -19.91	1.46 -0.31 2.99 -0.05 0.15 -8.10 -2.41 -3.96 -2.68 1.22 0.78 -1.55 -11.37 2.20 -0.98 2.50 -2.09	

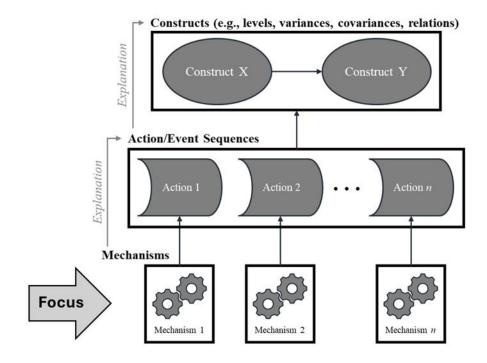
Utility of Using the Four Factors of Basketball

Pay Attention to the Action!


The four factors of basketball miss (aggregate over) the action!

By focusing on the action, one can better explain, predict, and control the outcomes of basketball games!

Example of Process Data


	vacancy [‡]	/acancy_department ‡	vacancy_type ‡	vacancy_duration ‡	vacancy_salary_range	activity	resource	time ‡
4 L	7	Purchasing	Full-time	Permanent	25000-50000	Disapprove Offer	Giovanni	2018-02-21 09:31:40
4 ?	2	Purchasing	Full-time	Permanent	25000-50000	Construct Offer	Immanuel	2018-02-24 10:58:35
43	2	Purchasing	Full-time	Permanent	25000-50000	Approve Offer	Ricardo	2018-03-10 10:48:01
4 1	2	Purchasing	Full-time	Permanent	25000-50000	Send Offer	Mauricio	2018-03-13 18:01:41
4 5	2	Purchasing	Full-time	Permanent	25000-50000	Send Offer	Mauricio	2018-03-20 17:24:57
4 5	2	Purchasing	Full-time	Permanent	25000-50000	Send Offer	Mauricio	2018-03-27 17:06:58
4 7	2	Purchasing	Full-time	Permanent	25000-50000	Receive Response	Mauricio	2018-04-02 15:41:47
4 3	2	Purchasing	Full-time	Permanent	25000-50000	Offer Accepted	Mauricio	2018-04-03 20:37:16
4)	2	Purchasing	Full-time	Permanent	25000-50000	Send Notification Rejections	Mauricio	2018-04-08 13:45:20
5)	2	Purchasing	Full-time	Permanent	25000-50000	Update Hr System	Chana	2018-04-11 18:52:57
5 L	3	Production	Full-time	Fixed term	25000-50000	Publish Position	Jessie	2017-12-20 18:09:23
5 ?	3	Production	Full-time	Fixed term	25000-50000	File Applications	Mauricio	2018-01-22 17:08:27
5 }	3	Production	Full-time	Fixed term	25000-50000	Check References	Mauricio	2018-02-01 12:52:45
5 1	3	Production	Full-time	Fixed term	25000-50000	Select Candidate	Giovanni	2018-02-09 14:23:40
5 5	3	Production	Full-time	Fixed term	25000-50000	First Interview	Talia	2018-02-22 11:06:14
5 5		Production	Full-time	Fixed term	25000-50000	Second Interview	Evelin	2018-03-09 12:10:37
5 7	3	Production	Full-time	Fixed term	25000-50000	Third Interview	Ashly	2018-03-25 13:52:25
5 3	3	Production	Full-time	Fixed term	25000-50000	Decline Candidate	Ricardo	2018-04-10 13:45:32

Insights From Process Data

Integrating Construct and Process Knowledge

Figure 2c Explanatory Process Theorizing

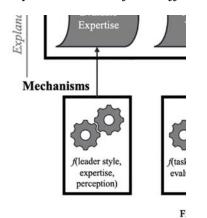
Critical Points

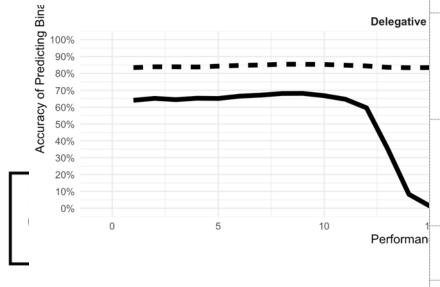
- (3) Action sequences can be summarized / aggregated to examine construct relations; can compare to constructbased empirical findings
- > (2) Process action sequences emerge from, are a consequence of generative mechanisms operating in a given context, time frame, for specific entities
- > (1) Fundamental focus of theorizing: operations of affect, behavior, cognition underlying the phenomena
- Computational process theorizing enables precise specification
- May be qualitative or narrative based, but then precision is challenged

A Leadership Example

Computational Process Theories improve our ability to explain, predict, and control phenomena of interest.

roach to decision-making in


Team Performance


performance-relevant behaviors (Kanfer et al., 2008). Highly motivated individuals are energized by and engaged in their work, leading them to proactively and consistently contribute to task completion in ways that meet or exceed what is expected of them (Cerasoli et al., 2014). In team

contexts, this increased activity directly translates into the effort that members expend towards

taskwork and teamwork demands necessary for completing job-relevant tasks, and therefore is a

key determinant of how effectively teams perform (Burke et al., 2006; Salas et al., 1992).

Prediction Type

	7. Team Performance					
Step	p Description					
1	Team members and leaders formulate perceptions of each member's performance expertise					
2	 Team members are ranked from most to least capable based on perceptions of expertise: IF team is operating under an autocratic leadership style, THEN the leader relies solely on their perceptions of member expertise to determine rank ordering IF team is operating under a delegative leadership style, THEN members collectively determine rank ordering using aggregate (average) perceptions of member expertise 					
3	Team members are allocated to tasks by assigning the most capable member to the most valuable/important task, second most capable member to the second most valuable/important task, etc. until all members and tasks are assigned					
4	Team members determine how they will work on their assigned task based on their actual expertise: • IF team is operating under an autocratic leadership style, THEN the leader uses their expertise to identify how each member should perform their assigned task • IF team is operating under a delegative leadership style, THEN each member uses their own expertise to identify how they should perform their assigned task					
5	Team members decide whether they will work on their assigned tasks given its priority relative to other external/non-work task demands • IF a team member chooses to work, they execute their chosen task behavior and accumulate performance on their assigned task based on its effectiveness • IF a team member chooses not to work, they do nothing and contribute no performance to their assigned task					
6	Team members' attributes (actual expertise, work task priority) and their evaluations of other					

team members (social influence, perceived expertise) update based on the resultant outcomes

of members' behavior for team task performance Repeat steps 1-6 until end of task or deadline

Does Organizational Science Matter?

People make organizations...

...but also, organizations make bigger collectives.

With organizational science focused on how entities function for phenomena of interest to emerge...

...organizational scientists and practitioners can change the world!

A Few Background References

- Kuljanin, G., Braun, M. T., Grand, J. A., Olenick, J. D., Kozlowski, S. W. J., & Chao, G. T. (2024). Advancing organizational science with computational process theories. *The Leadership Quarterly*, *35(4)*, 101797, https://doi.org/10.1016/j.leaqua.2024.101797
- Grand, J. A., Braun, M. T., & Kuljanin, G. (2025). Hello world! Building computational models to represent social and organizational theory. *Organizational Research Methods*, *28*, 487-539. https://doi.org/10.1177/10944281241261913
- Grand, J. A., Braun, M. T., Kuljanin, G., Kozlowski, S. W. J., & Chao, G. T. (2016). The dynamics of team cognition: A process-oriented theory of knowledge emergence in teams. *Journal of Applied Psychology, 101*(10), 1353–1385. https://doi.org/10.1037/ap10000136
- Braun, M. T., Kuljanin, G., Grand, J. A., Kozlowski, S. W. J., & Chao, G. T. (2022). The power of process theories to better understand and detect consequences of organizational interventions. *Industrial and Organizational Psychology*, 15(1), 99–104. https://doi.org/10.1017/iop.2021.125
- Kuljanin, G., & Lemmon, G. (2024). The role of work psychologists in the development of antiwork sentiments. *Industrial and Organizational Psychology: Perspectives on Science and Practice, 17*(1), 45–49. https://doi.org/10.1017/iop.2023.83
- Simon, H. A. (1992). What is an "explanation" of behavior? *Psychological Science*, *3*(3), 150–161. https://doi.org/10.1111/j.1467-9280.1992.tb00017.x
- Coveney, P. V., Dougherty, E. R., & Highfield, R. R. (2016). Big data need big theory too. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374*(2080), 20160153. https://doi.org/10.1098/rsta.2016.0153

Acknowledgments

Michael T. Braun
Associate Professor
Department of Management and
Entrepreneurship
DePaul University

James A. Grand
Associate Professor
Department of Psychology
University of Maryland

Steve W. J. Kozlowski
World Class Scholar and Professor
Department of Psychology
University of South Florida

Georgia T. Chao
Professor
Department of Psychology
University of South Florida

U.S. Navy Science and Technology

U.S. Army Research Institute for the Behavioral and Social Sciences

Thank You! Goran Kuljanin, Ph.D. E-mail: g.kuljanin@depaul.edu DEPAULUNIVERSITY

