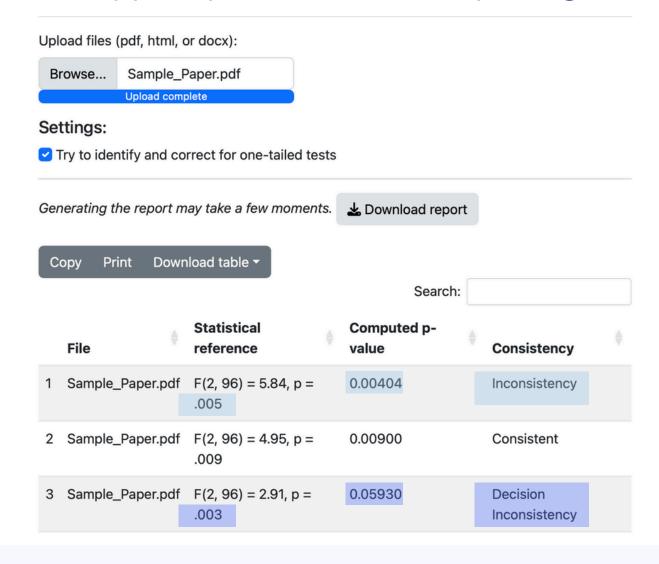


# Novel tools for open science

Sheila K. Keener Strome College of Business Old Dominion University


November 14, 2025

## statcheck



#### "Spellchecker for stats"

- Introduced in <u>2015 by Nuijten and colleagues</u>.
- Determines whether reported p-values match the accompanying test statistics and dfs.
- Requires results to be in APA format (t-tests, F-tests, correlations, z-tests, Q-tests, and Chi-Square tests).
- Web-based app: <a href="https://statcheck.io">https://statcheck.io</a>; R package: <a href="https://statcheck.io">statcheck</a>



```
#statcheck
install.packages("statcheck")
install.packages("readtext")
library(statcheck)
library(readtext)
setwd ("/Users/sheilakeener/Dropbox/CARMA/")

#Option 1: directly enter text
text<- "(F(2,96) = 5.84, p = .005)"
statcheck(text)

#Option 2: full text document
doc<-readtext("Sample_Paper.docx")
res<-statcheck(doc$text)
res

#Option 3: pdf document
checkPDF("Sample_Paper.pdf")</pre>
```

## metacheck (formerly papercheck)

#### **Manuscript screener**

- Developed by the <u>ScienceVerse / MetaCheck</u> team
- Modules that look for:
  - Missing effect sizes
  - Imprecise p-values (e.g., "<.05" or "ns")</li>
  - References to papers in the Retraction Watch database
  - p-values described as "marginally significant"
  - Inconsistent p-values (using statcheck)
- Other modules are in development

```
install.packages("devtools")
devtools::install_github("scienceverse/metacheck")
library(metacheck)
install.packages(c("shinydashboard", "shinyjs", "shiny.i18n", "DT", "waiter"))
pdf_file<-file.choose()</pre>
xml_file<-pdf2grobid(pdf_file)</pre>
paper<-read(xml_file)</pre>
file.copy(xml_file, "/Users/sheilakeener/Dropbox/CARMA/Sample_Paper.xml")
#opens shiny app
metacheck_app()
```



#### Missing Effect Sizes

No effect sizes were detected for any t-tests or F-tests. The Journal Article Reporting Standards state effect sizes should be reported.

| text                                        | section | div | р | s | test_text       | test |
|---------------------------------------------|---------|-----|---|---|-----------------|------|
| We found that $F(2, 96) = 5.84, p = .005$ . | results | 10  | 1 | 1 | F(2, 96) = 5.84 | F-   |
|                                             |         |     |   |   |                 | test |



You may have reported some imprecise p-values

| text   | p_comp | p_value | section | div | р  | s |
|--------|--------|---------|---------|-----|----|---|
| p < .1 | <      | 0.10    | intro   | 2   | 13 | 3 |

#### RetractionWatch

You cited no papers in the Retraction Watch database (as of 2025-05-20)

#### Marginal Significance

No effects were described as marginally/borderline/close to significant.



We detected possible errors in test statistics

## LLMS (e.g., ChatGPT, Gemini)

## Assist with Coding, Annotating, & Troubleshooting

- Explain what code does, step-by-step, to help you:
  - More clearly annotate code to share.
  - Adapt it correctly.
- Troubleshoot errors in code.
- Spot obvious errors in code.
- Translate Code (R <-> Python code)
- Still requires human verification LLMs make mistakes.

Sample Prompt: Assess the clarity and reproducibility of this code.

Identify anything confusing, ambiguous, or not well-documented.

Suggest improvements to comments, structure, naming, and workflow explanation to make the code easier for someone else to rerun.

## Support Transparency & Reporting Standards

- Evaluate manuscripts against the Journal Article Reporting Standards (JARS), Meta-analytic Reporting Standards (MARS), APA format, etc.
- Compare manuscript to pre-registration.
- Identify missing reporting elements or unclear descriptions in documentation/methods.
- Adjust privacy settings before uploading manuscripts;
   enterprise/business versions provide more protection.

Sample Prompt: Compare this manuscript to the APA Journal Article Reporting Standards (JARS-Qual). Identify which required reporting elements are present, which are incomplete, and which are missing. Provide the results in a clear table with three columns: Required Item, Status (Present / Incomplete / Missing), and Suggested Fix. Then give me a concise narrative summary of the biggest reporting gaps.

## Other useful tools

## Granularity-related inconsistency means (GRIM) Test

- Developed by <u>Brown & Heathers (2017)</u>.
- Examines whether reported means are mathematically possible given the number of Likert-type items and sample size.

| N  | 0.64 | rounded | mean | items:                                                                                                       |
|----|------|---------|------|--------------------------------------------------------------------------------------------------------------|
| 1  | 0.64 | 1.00    | 1.00 |                                                                                                              |
| 2  | 1.28 | 1.00    | 0.50 | Instructions:                                                                                                |
| 3  | 1.92 | 2.00    | 0.67 | 1. Enter the number of Likert-type items in the scale (typically 1) in cell F1                               |
| 4  | 2.56 | 3.00    | 0.75 | 2. Enter the fractional part of the mean to test in cell B1                                                  |
| 5  | 3.20 | 3.00    | 0.60 | 3. Look for your sample size in Column A                                                                     |
| 6  | 3.84 | 4.00    | 0.67 | 4. The corresponding number in Column D i the correctly reported mean.  Green=consistent, white=inconsistent |
| 7  | 4.48 | 4.00    | 0.57 |                                                                                                              |
| 8  | 5.12 | 5.00    | 0.63 |                                                                                                              |
| 9  | 5.76 | 6.00    | 0.67 |                                                                                                              |
| 10 | 6.40 | 6.00    | 0.60 |                                                                                                              |
| 11 | 7.04 | 7.00    | 0.64 |                                                                                                              |
| 12 | 7.68 | 8.00    | 0.67 |                                                                                                              |

### **Degrees of freedom calculator**

- Developed by Green et al., and cited in <u>Cortina et al.</u> (2017).
- <u>Shiny app</u> that lets you calculate the correct dfs for SEM/CFA and path models.

"We tested a three-factor CFA (12 items). The model had acceptable fit to the data,  $\chi 2(48)$ =78.32,p=.011, CFI = .99, TLI = .98, RMSEA = .045 (90% CI [.022, .065]), SRMR = .032"

#### **Output**

Knowns = 78

Unknowns = 27

**Degrees of Freedom = 51** 

Feel free to contact me with questions later: skeener@odu.edu